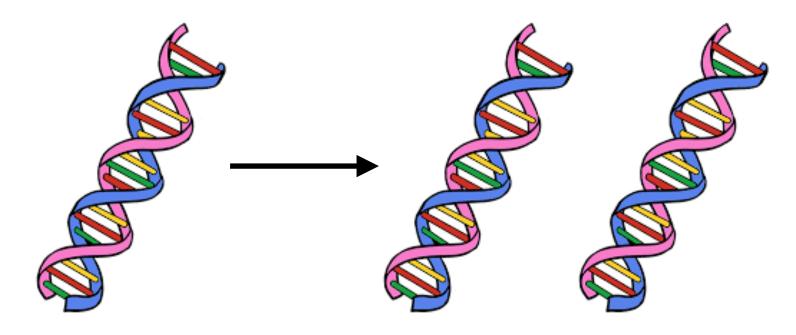
Diffusion models for Protein Generation

Jason Yim

What do proteins do?

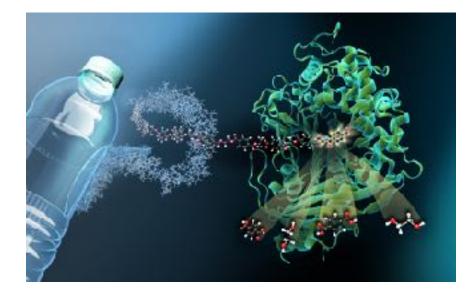
Nature has evolved proteins to perform necessary functions for life.



For example, DNA replication

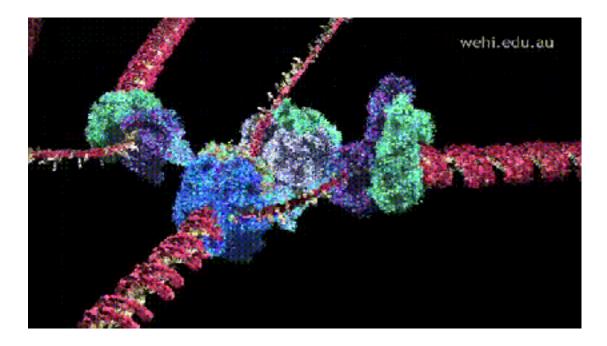
Humans have engineered proteins for specific needs.

Vaccine & drugs



Plastic degrading enzymes

Image: Martin Künsting/HZB



Proteins performing DNA replication

Genome editing

Image: Amanda Heidt via The Scientist

Why Al for proteins?

Eroom's Law

(Moore's law backwards!)

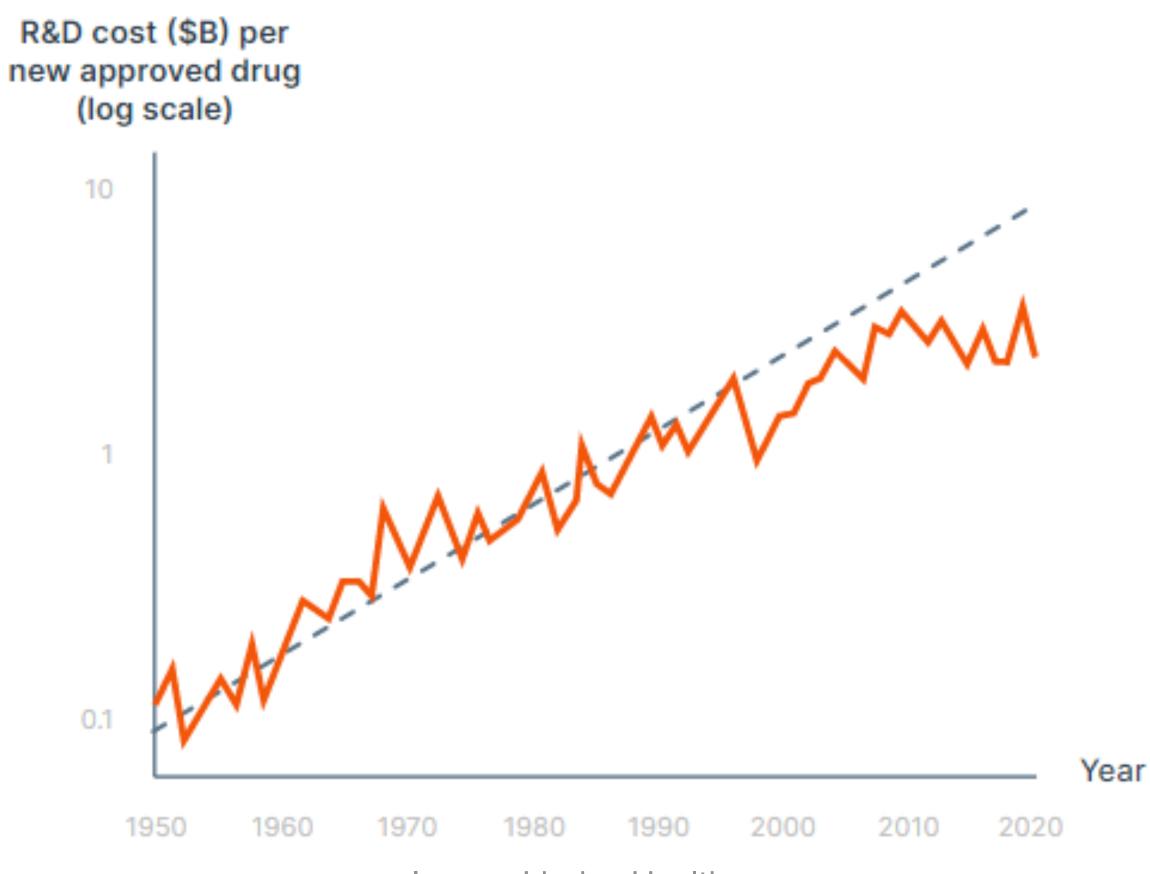
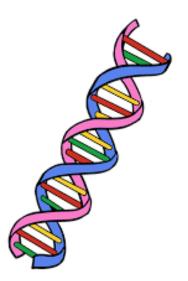


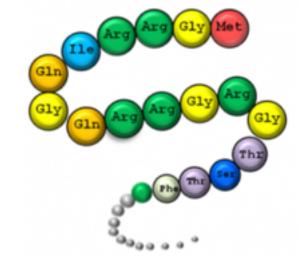
Image: Lindus Health

- Drug development crisis.
 - Takes ~10 years and ~\$2.6 billion to make a single drug.
 - Can Al accelerate this timeline?

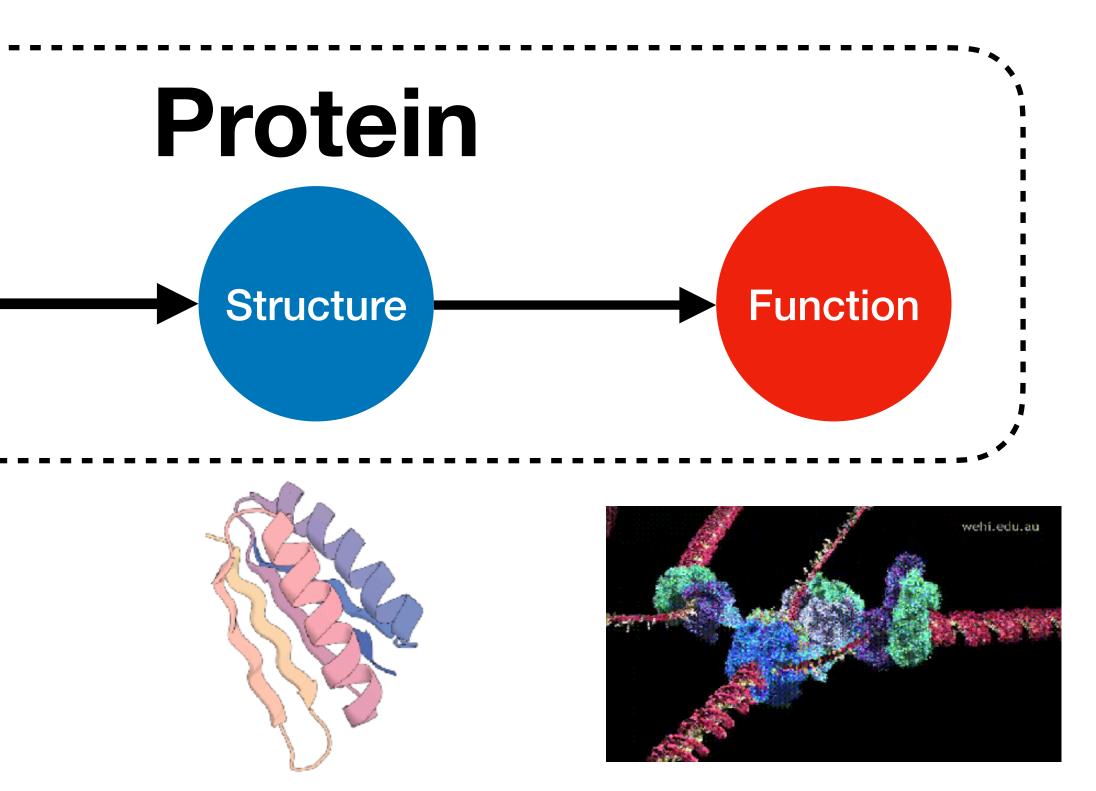
Protein modeling

DNA Sequence





4 letter vocabulary 20 letter vocabulary

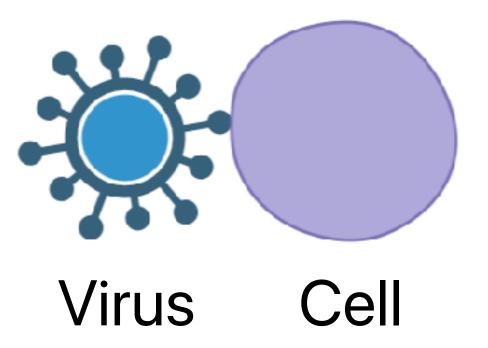


3D coordinates

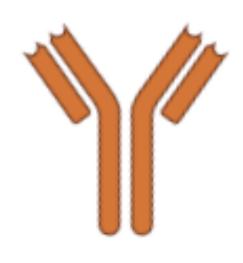
Binding, Reactions

Protein function: simplified example

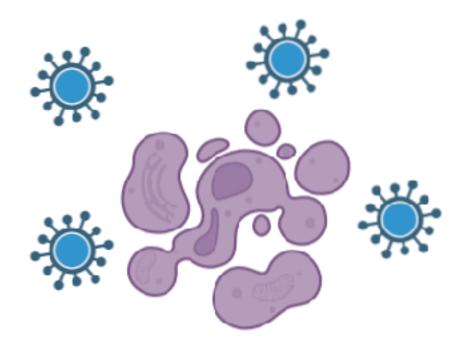
• How do viruses work?



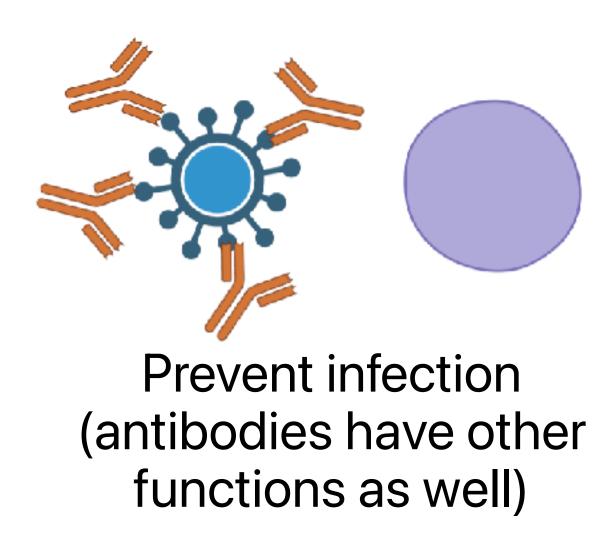
How does protein binding stop viruses?



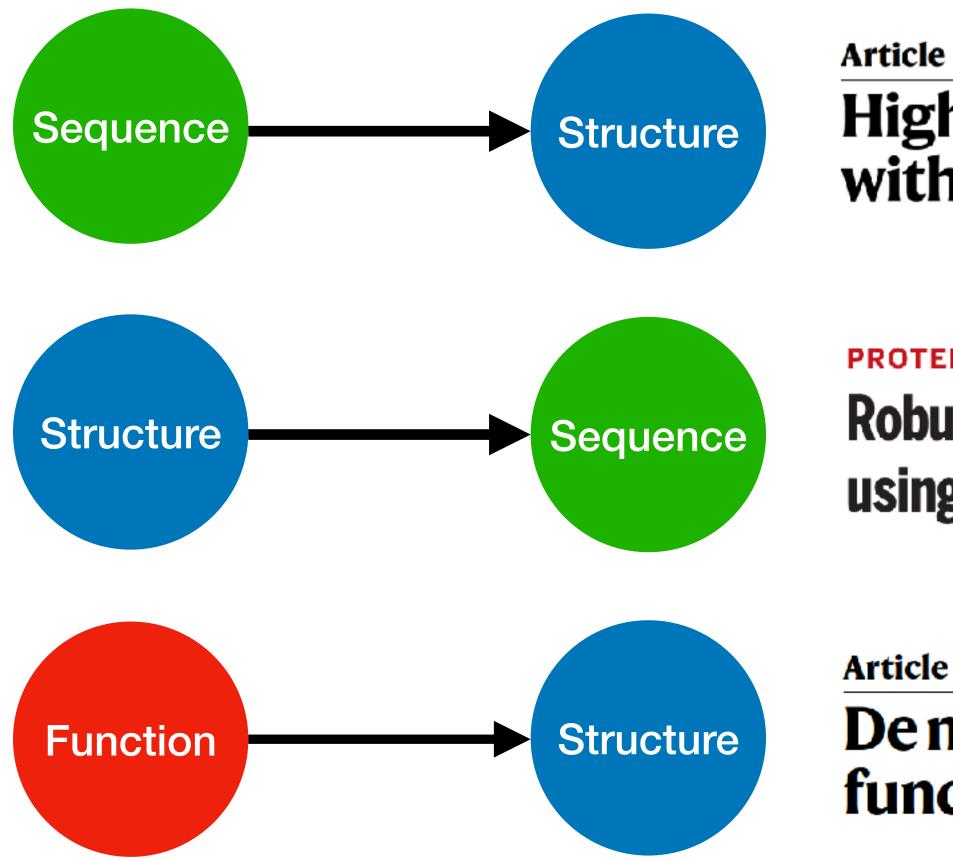
Designed antibodies



Cell death, virus replication, human gets sick



Machine learning is revolutionizing protein design

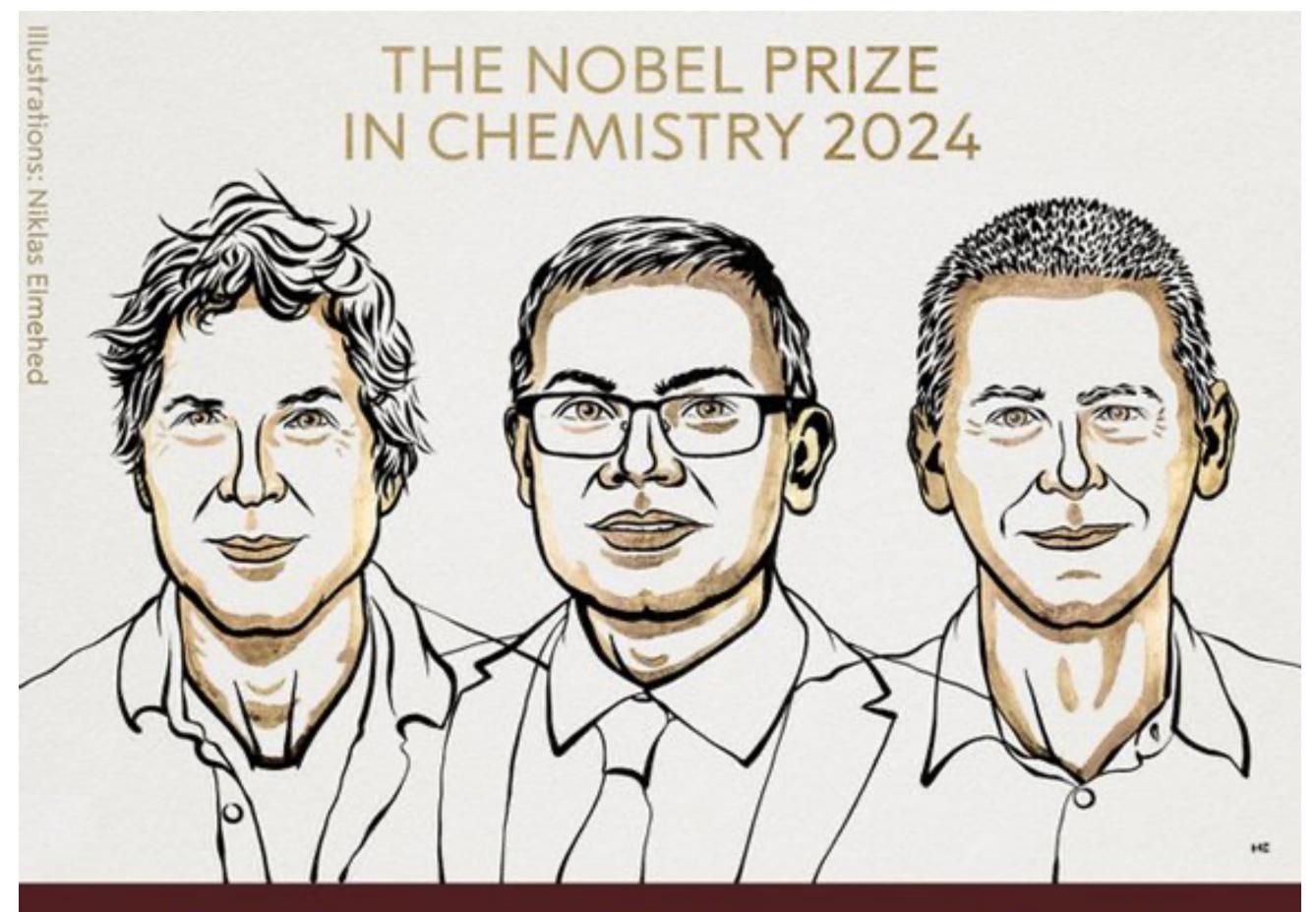


Highly accurate protein structure prediction with AlphaFold

PROTEIN DESIGN

Robust deep learning-based protein sequence design using ProteinMPNN

Denovo design of protein structure and function with **RFd**iffusion



David Baker

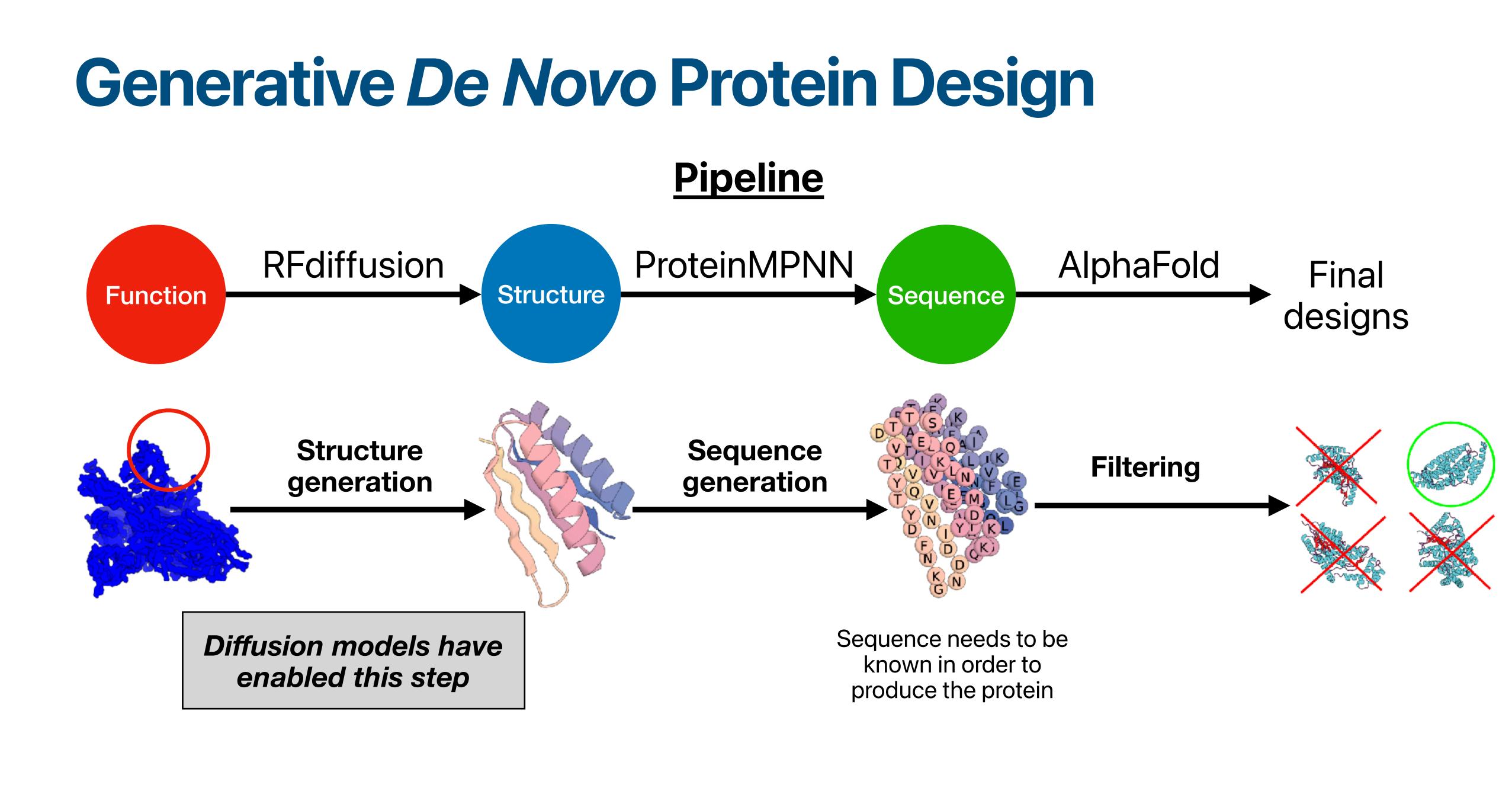
"for computational protein design"



THE ROYAL SWEDISH ACADEMY OF SCIENCES

John M. Demis Hassabis Jumper

"for protein structure prediction"



Generative AI is coming to biology

Backed by \$1 billion, Xaira Therapeutics is readying AI-generated drugs

The start-up is using software out of David Baker's lab to dream up medicines

by Rowan Walrath

ISOMORPHIC LABS ANNOUNCES STRATEGIC MULTI-TARGET RESEARCH COLLABORATION WITH LILLY

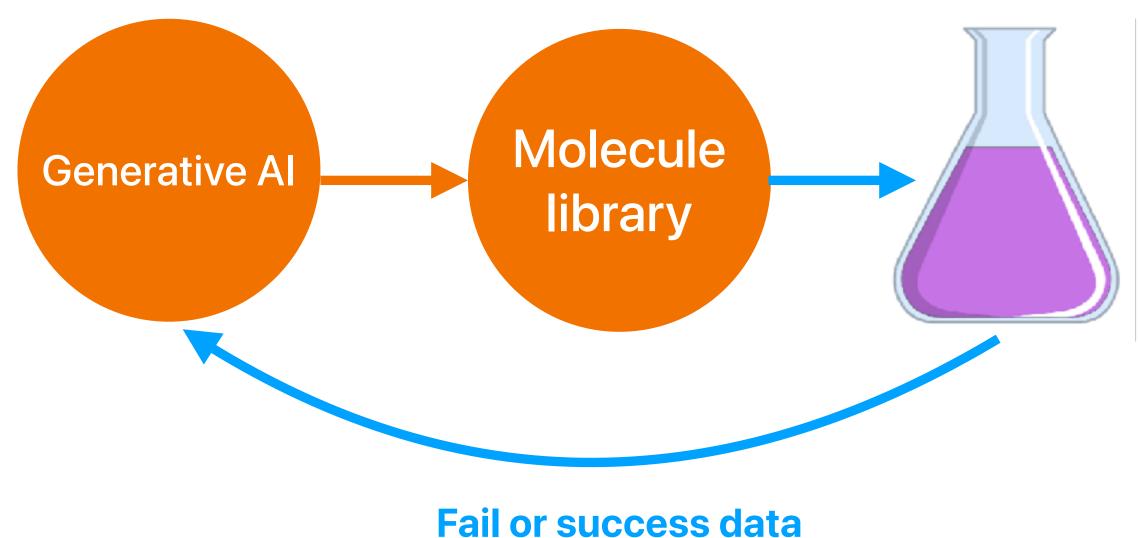
Isomorphic Labs to Receive \$45 Million in Upfront Payment with Potential Total Deal Value up to \$1.7 Billion

AI

EvolutionaryScale, backed by Amazon and Nvidia, raises \$142M for protein-generating Al

Goal of Al in biomolecular design

- Combining generation and optimization into one pipeline with Al.
 - 1. Generation: Fast production of novel molecular libraries.
 - 2. **Optimization**: Efficient fine-tuning from experiments.



Experiment

1. Protein structure generation

• FrameDiff [1]

2. Generative protein design

• RFdiffusion [4]

3. Co-design and sequence generation

• MultiFlow [3]

4. Outlook

References provided at end

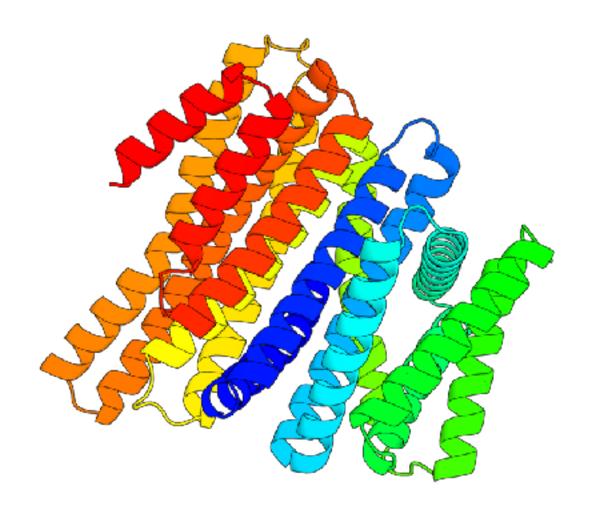
Goal: Diffusion for Protein Structure

1. Generate high quality structures.

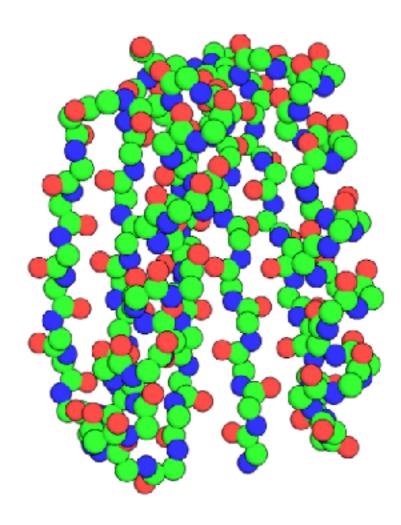
2. Generate **diverse** structures.

3. Generate **novel** structures.

4. Generate **functional** structures.



How to model a protein structure?



Issues:

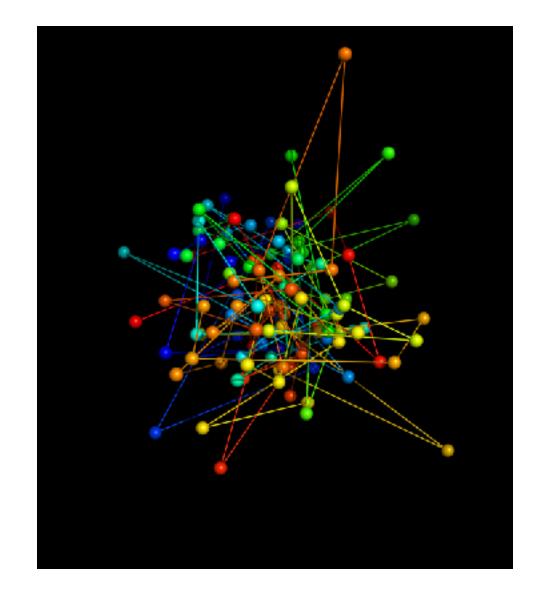
• Difficult to scale, bad performance.

Option #1: model 3D coordinates of every atom.

- + Precise control over atom placement.
- Bonds are not fixed.

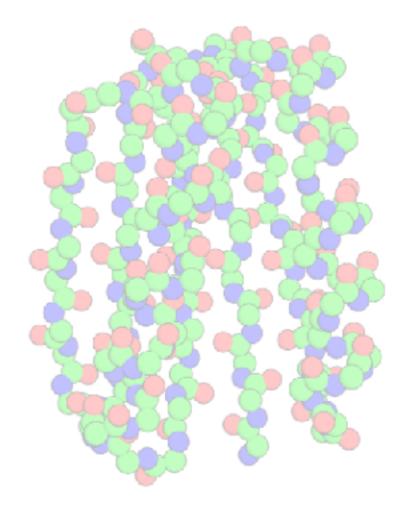
 Latest works shows it is possible to scale.

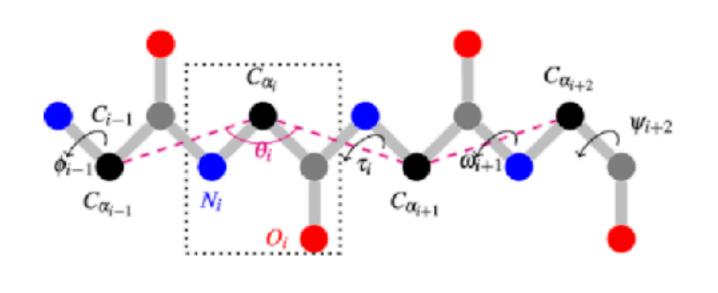
- We tried a version of this as the first step in 2022



Trippe, Yim et al 2022, "Diffusion Probabilistic Modeling of Protein Backbones in 3D for the Motif-Scaffolding Problem"

How to model a protein structure?



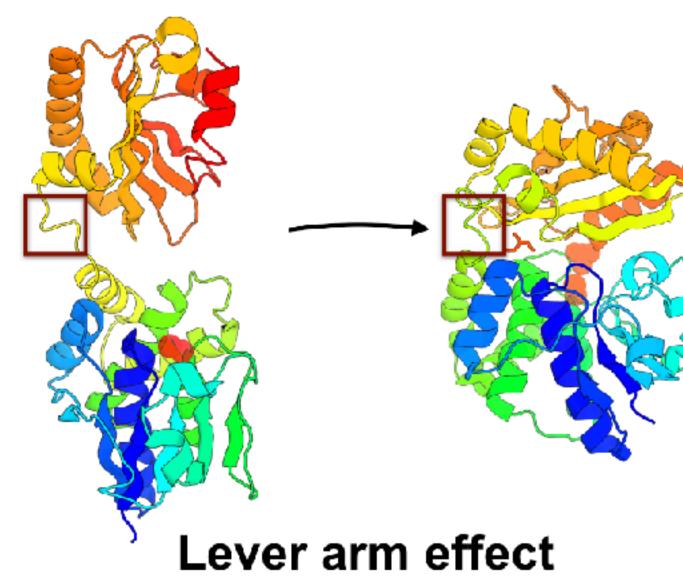


Option #1: model 3D coordinates of every atom.

- + Precise control over atom placement.
- Bonds are not fixed.

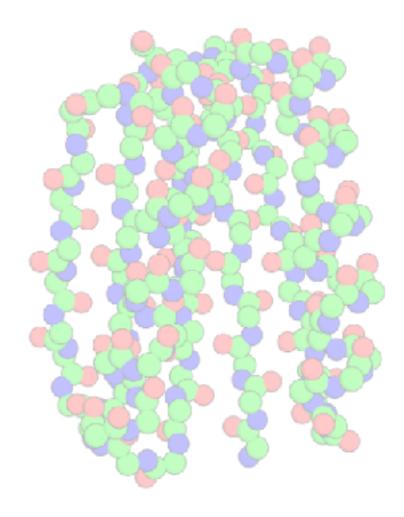
torsion angles.

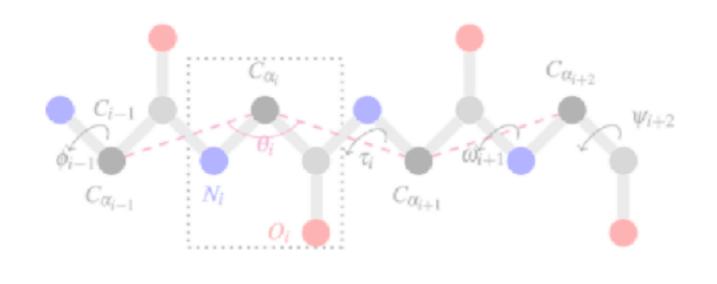
- + Bonds are fixed. - Hard to control atom
- placement.



Option #2: model only

How to model a protein structure?



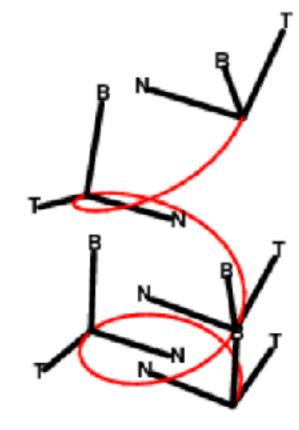


Option #1: model 3D coordinates of every atom.

- + Precise control over atom placement.
- Bonds are not fixed.

torsion angles.

- Bonds are fixed. +... Hard to control atom
- placement.

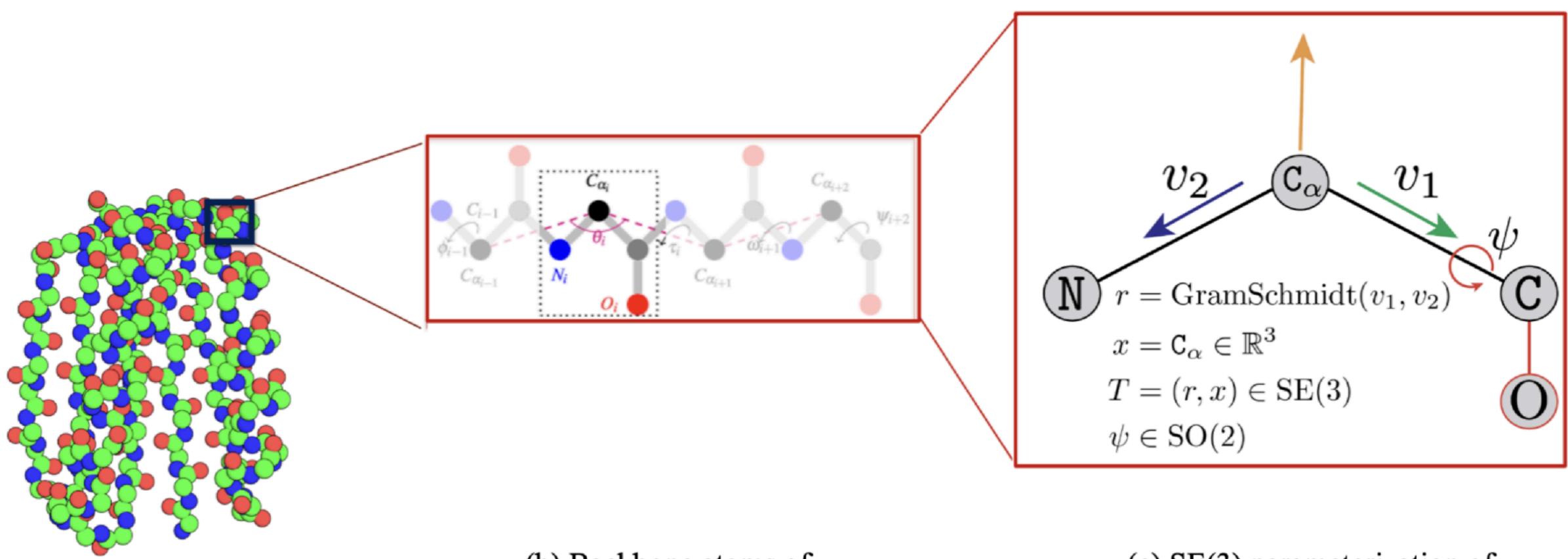


Option #2: model only

Option #3: model with frames along a chain.

- 3 out of 4 bonds are fixed.
- **Precise control over** frame placement

Background: Protein Frames

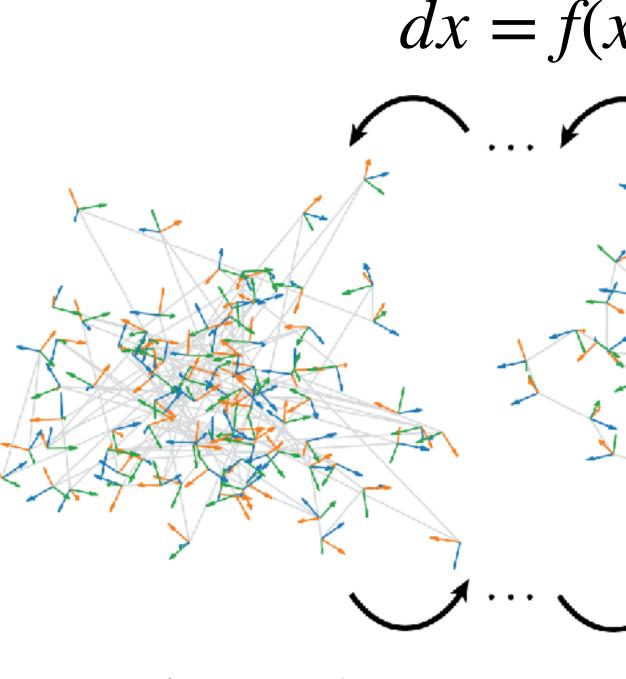


(a) Protein backbone atoms

(b) Backbone atoms of a single residue (c) SE(3) parameterization of backbone atoms of a single residue

Goal: Diffusion for Protein Frames

Forward process (noising)



 $p_1(x)$ (noise)

Reverse process (sampling)

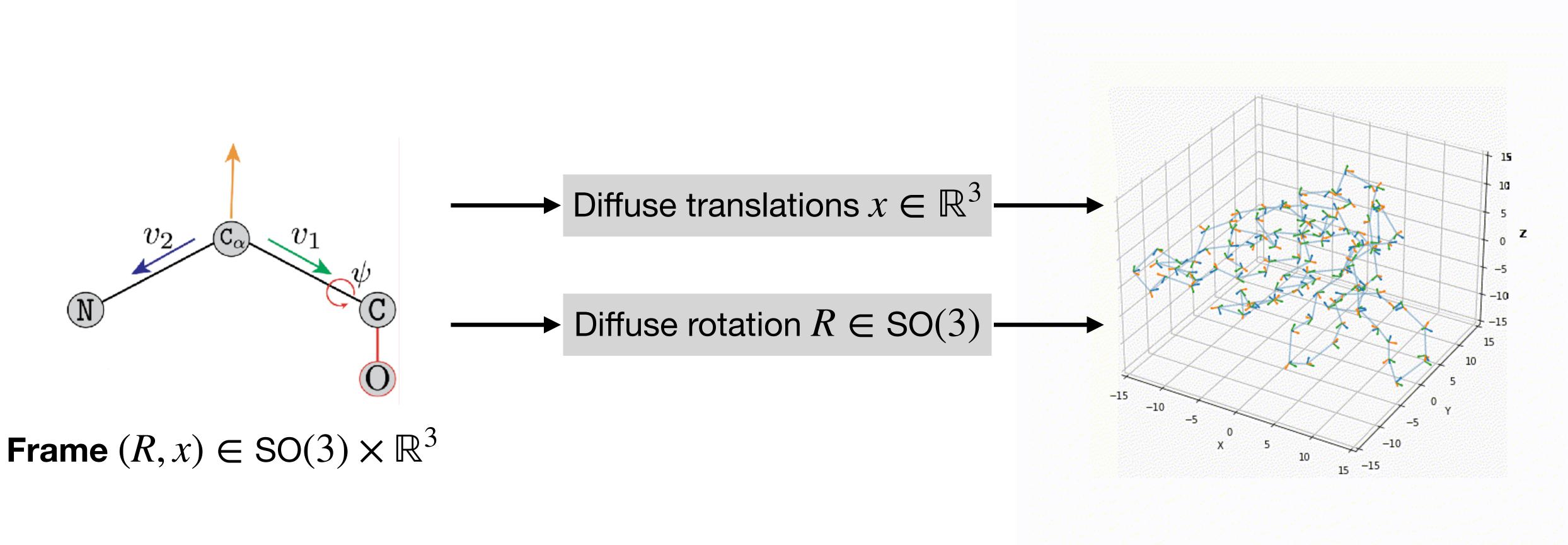
dx = f(x, t)dt + g(t)dB

 $p_0(x)$ (data)

 $dx = [f(x,t) - g(t)^2 \nabla \log p_t(x)]dt + g(t)dB$

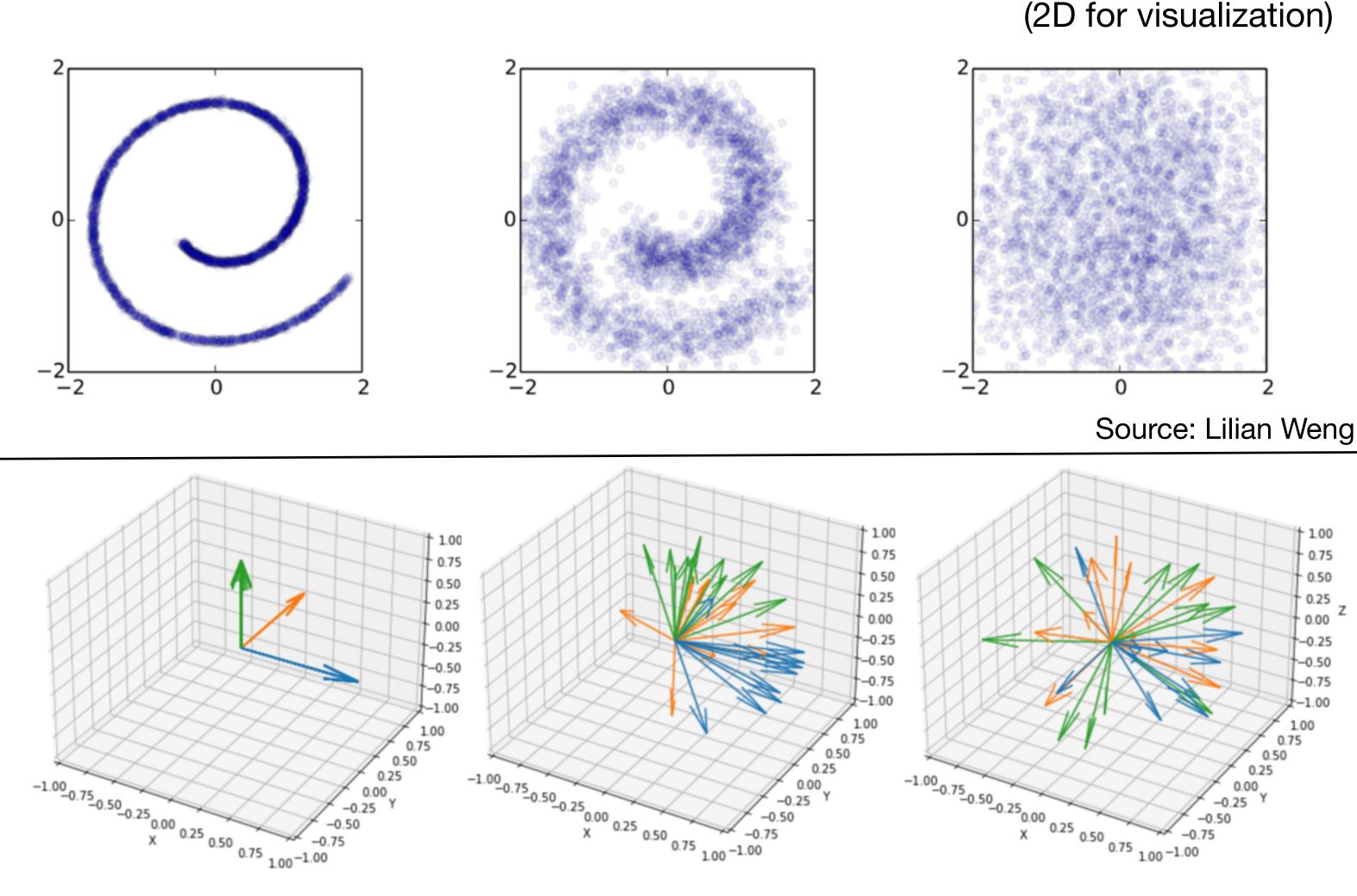
Learned by neural network.

Diffusion over Riemannian Manifolds How to diffuse a frame?



Diffusion over Riemannian Manifolds How to diffuse a frame?

Diffuse translations $x \in \mathbb{R}^3$ Brownian motion on \mathbb{R}^3 $p_{t|0}\left(x^{(t)} | x^{(0)}\right) = \mathcal{N}(x^{(t)}; \beta(t)x^{(0)}, \sigma(t))$



Diffuse rotation $R \in SO(3)$

Brownian motion on SO(3) $p_{t|0}\left(R^{(t)} | R^{(0)}\right) = \mathsf{IGSO}_3(r^{(t)}; r^{(0)}, t)$ where $r^{(t)} = Log(R^{(t)}), r^{(0)} = Log(R^{(0)})$

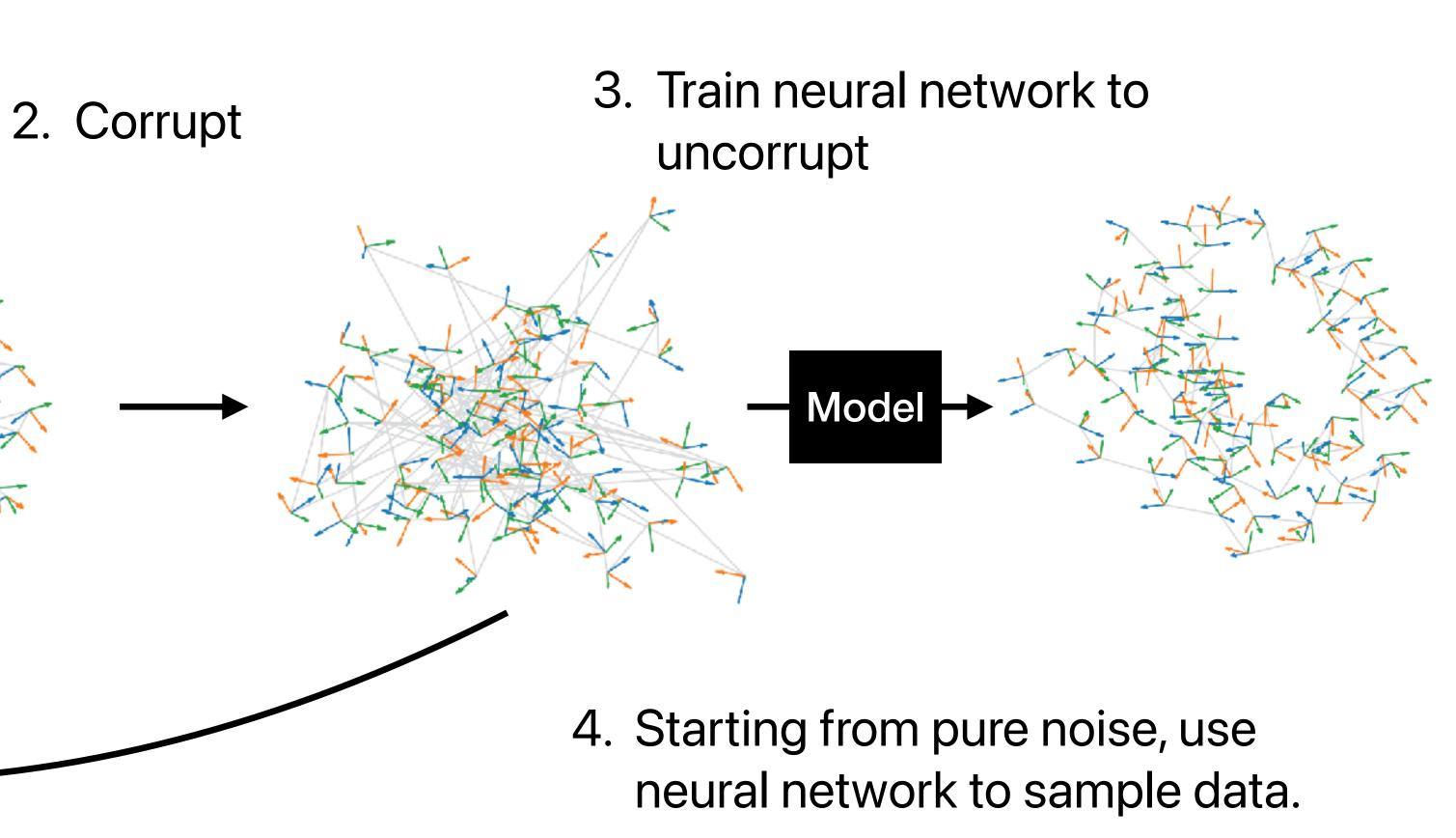
t = 0.0

t = 0.5

t = T

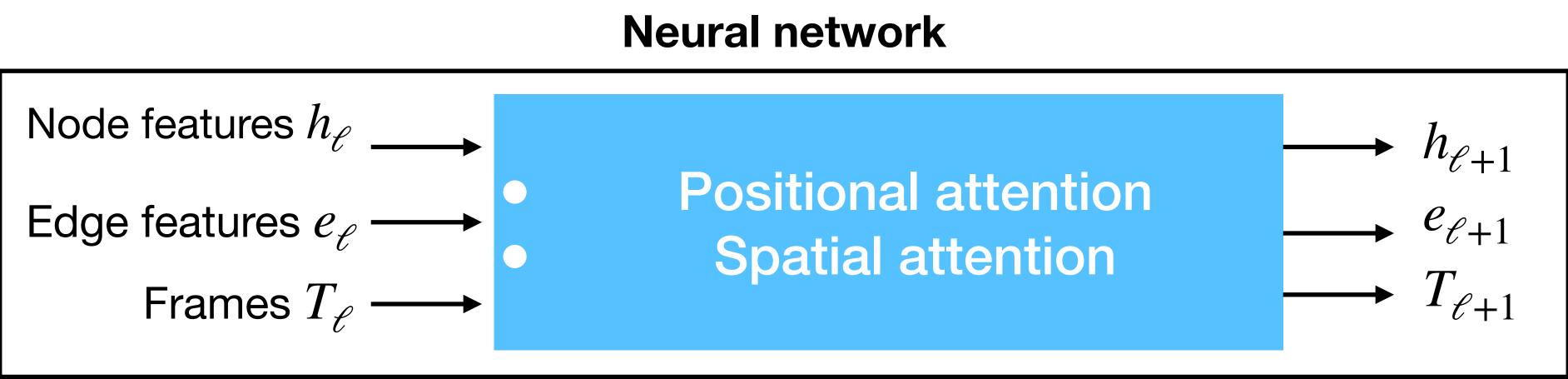
Frame Diffusion: Training & Generation

1. Parameterize proteins



Model architecture

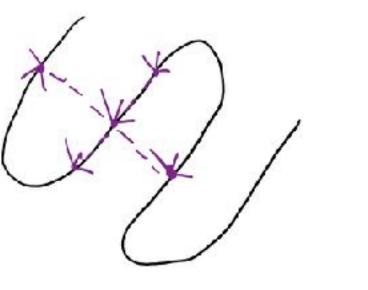
 Heavily inspired by AlphaFold2 architecture with two main components:

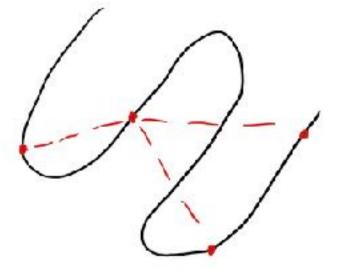


Single layer ℓ . Full model: stack multiple layers end-to-end.

Spatial attention biases towards local residues

Positional attention allows global interactions.



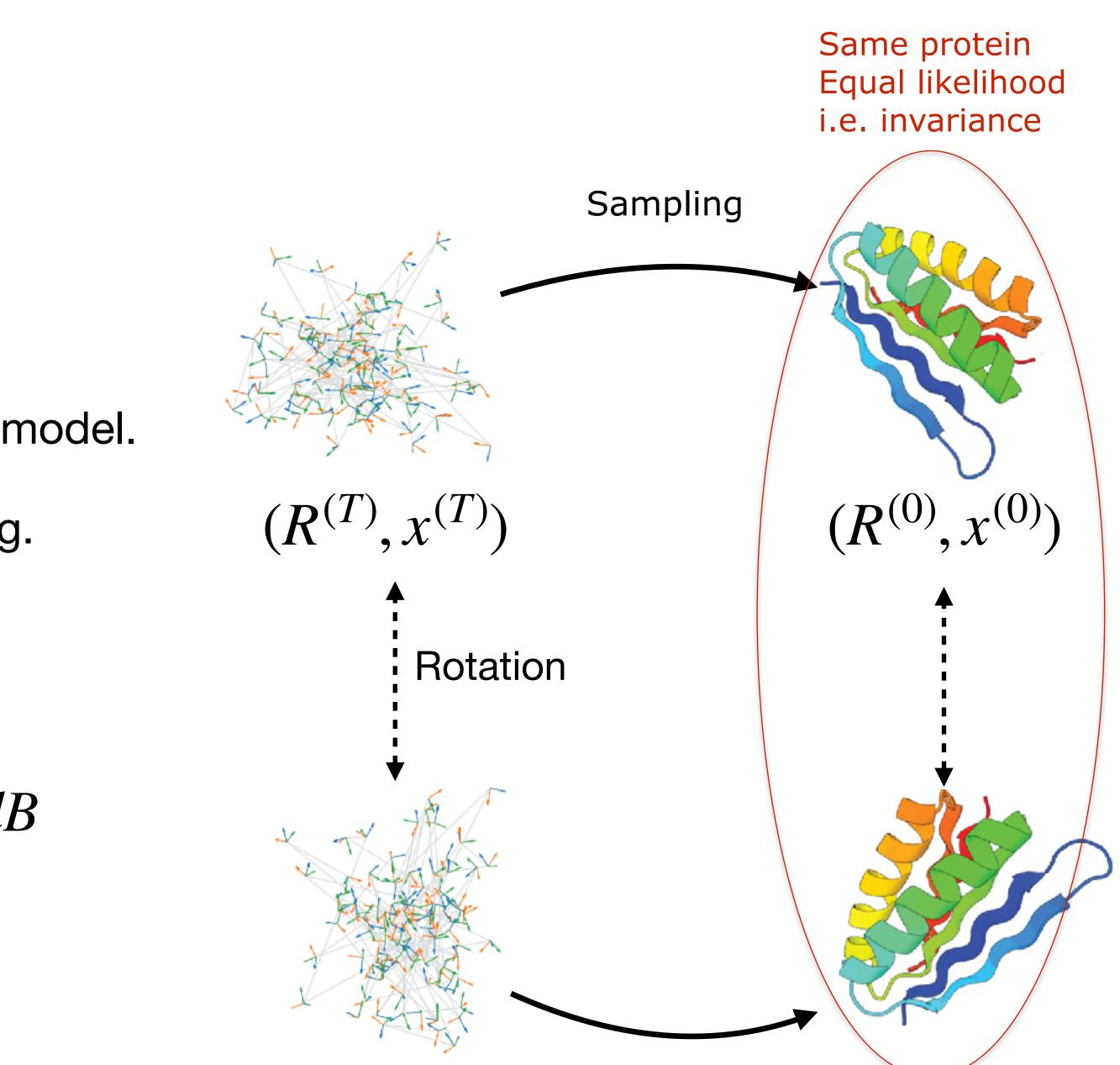


$SE(3)^N$ invariance

- Invariance requires the following:
 - By learning a $SE(3)^N$ equivariant score model.
 - Translation invariance: by zero-centering.

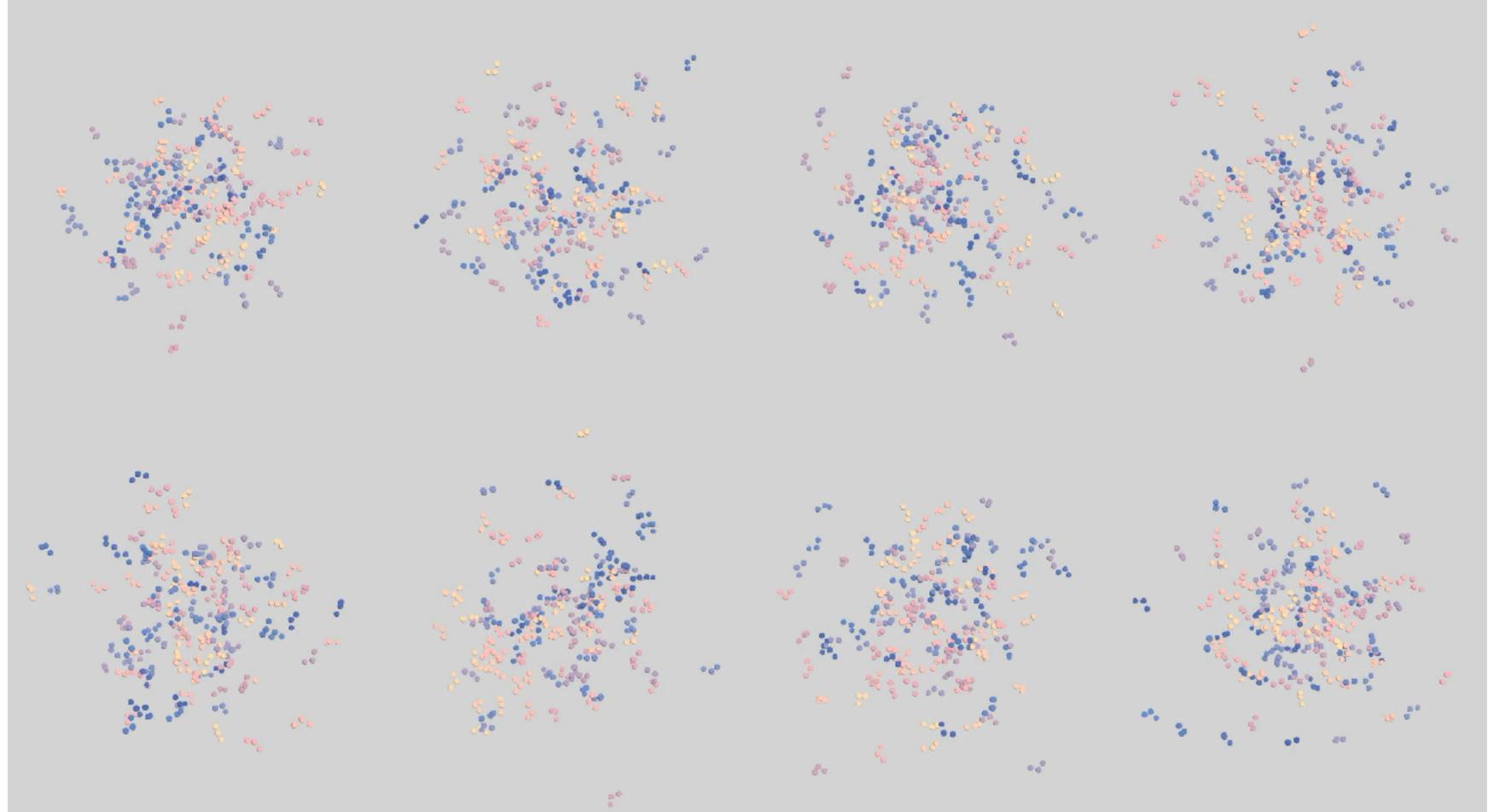
Needs to be
equivariant
$$dx = [f(x, t) - g(t)^2 \nabla \log p_t(x)] dt + g(t) dt$$

Reverse process (sampling)



Unconditional generation How well does the model sample realistic proteins?

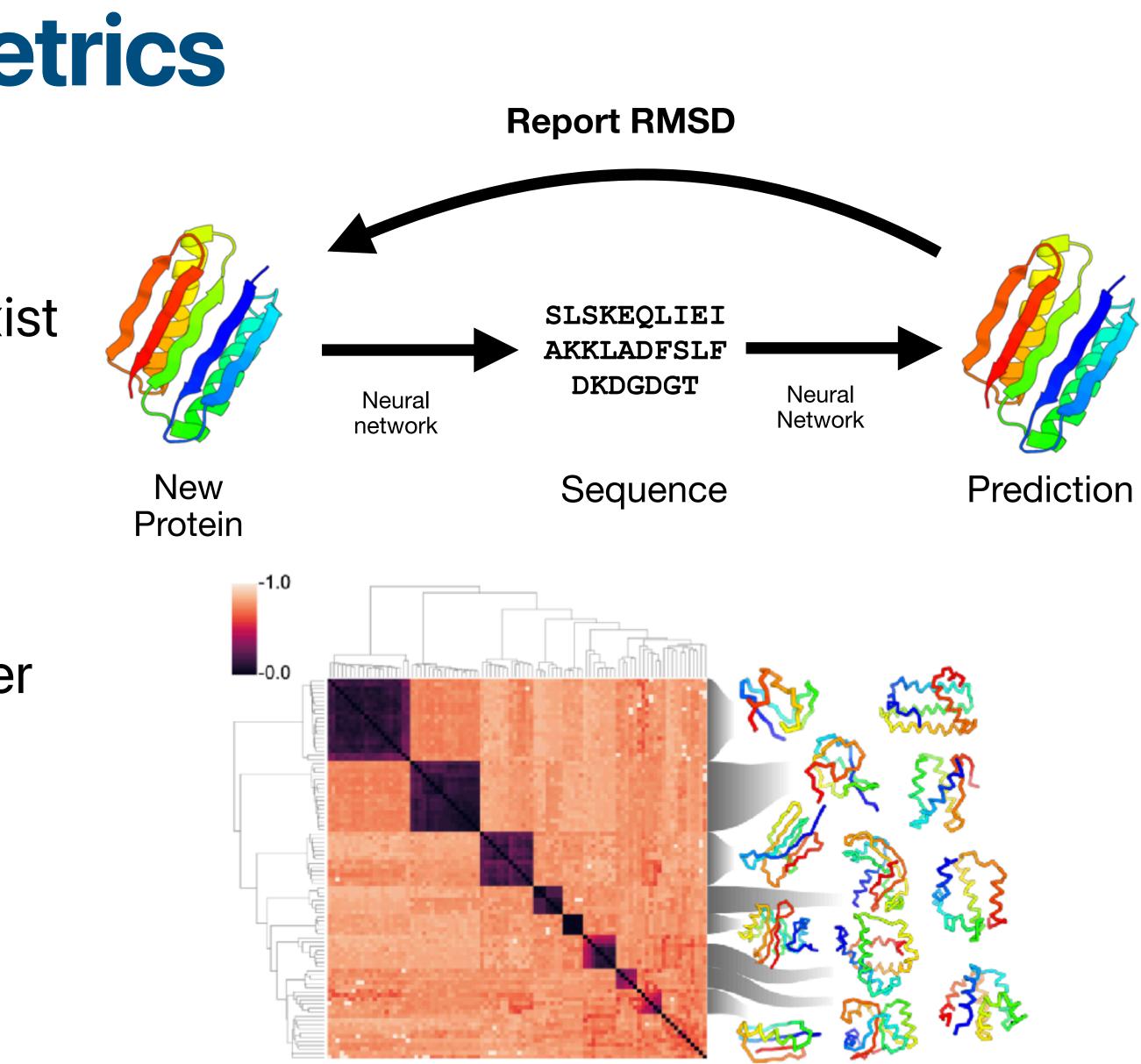
Generation from only noise with no other conditions.



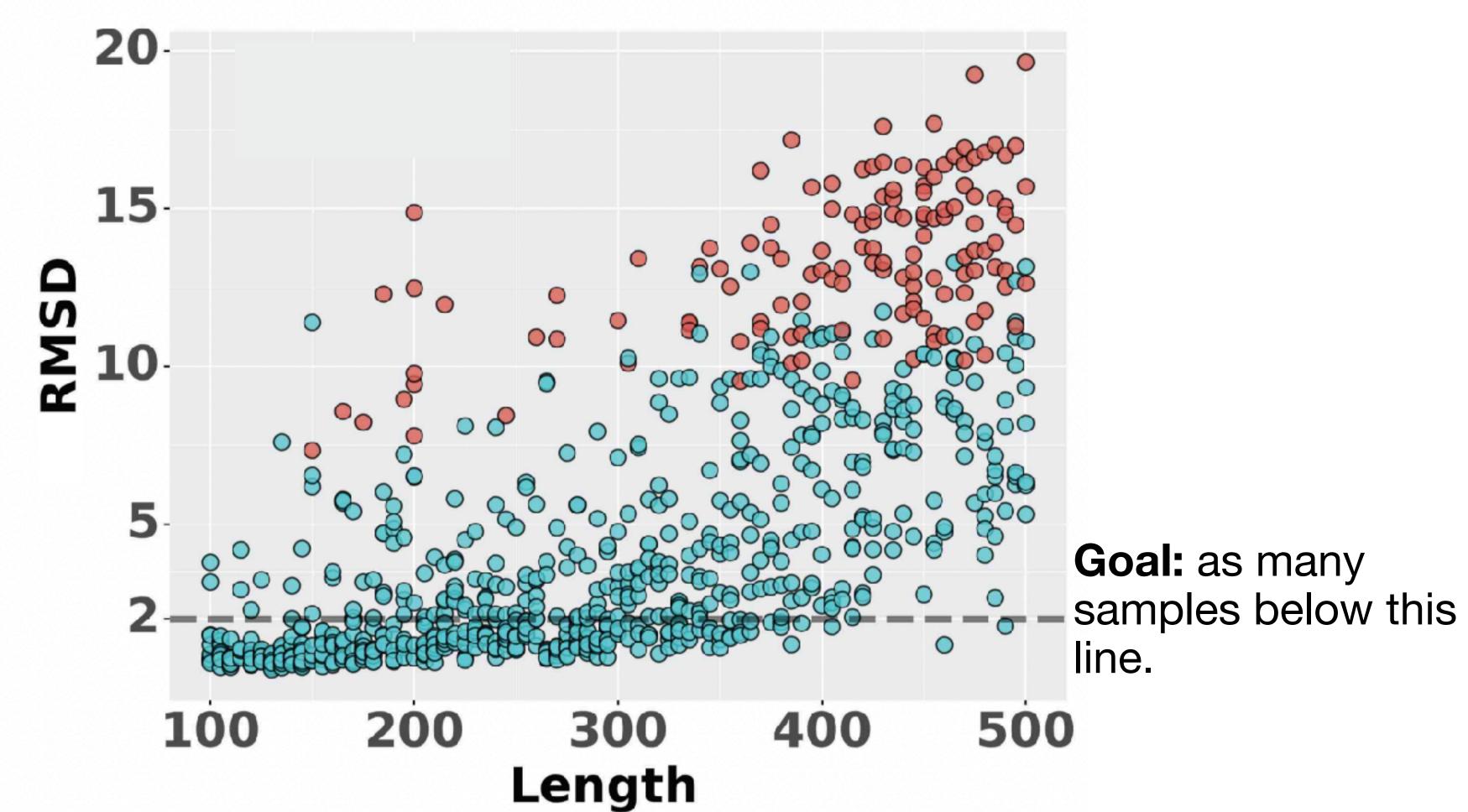
In-silico Evaluation Metrics

• **Realism check**: could a sequence exist with the Al-generated structure.

• **Diversity**: structurally cluster all designable backbones. Report number or fraction of clusters.

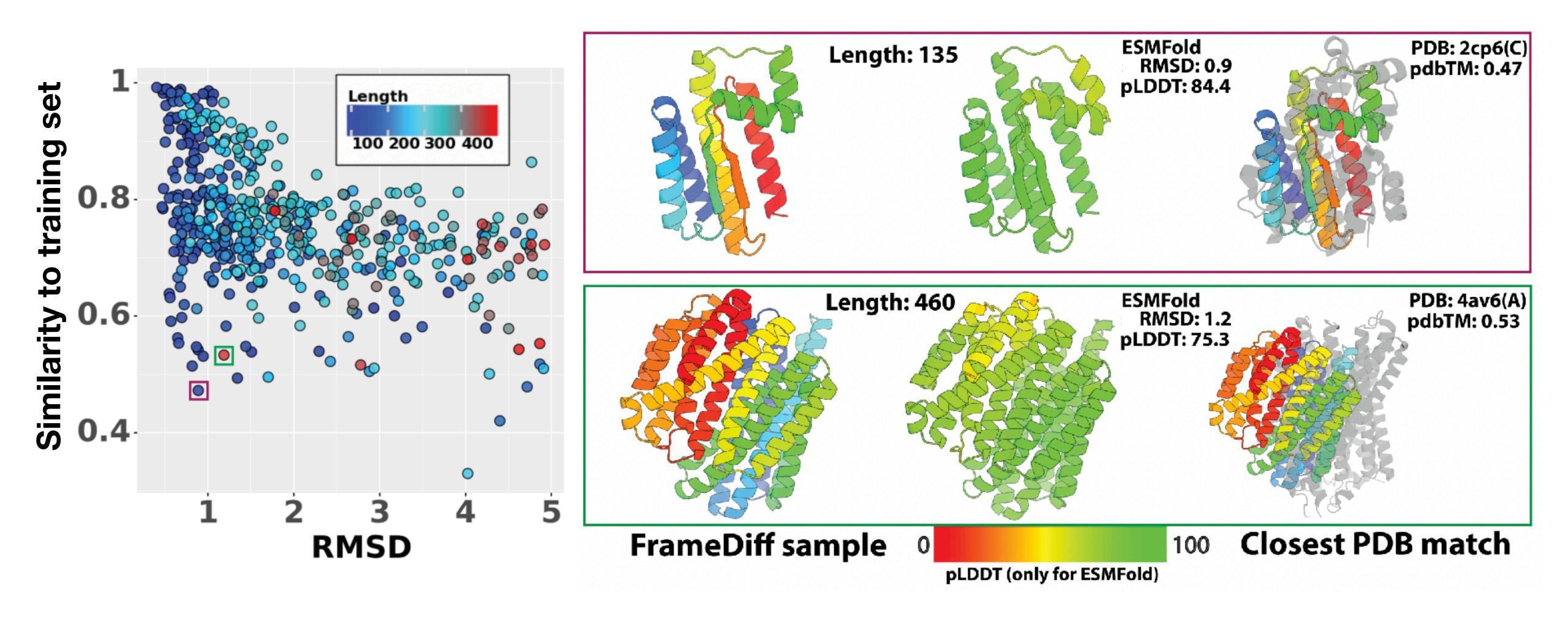


FrameDiff results



FrameDiff results

• *In-silico* evidence of generalizing beyond PDB (training set)

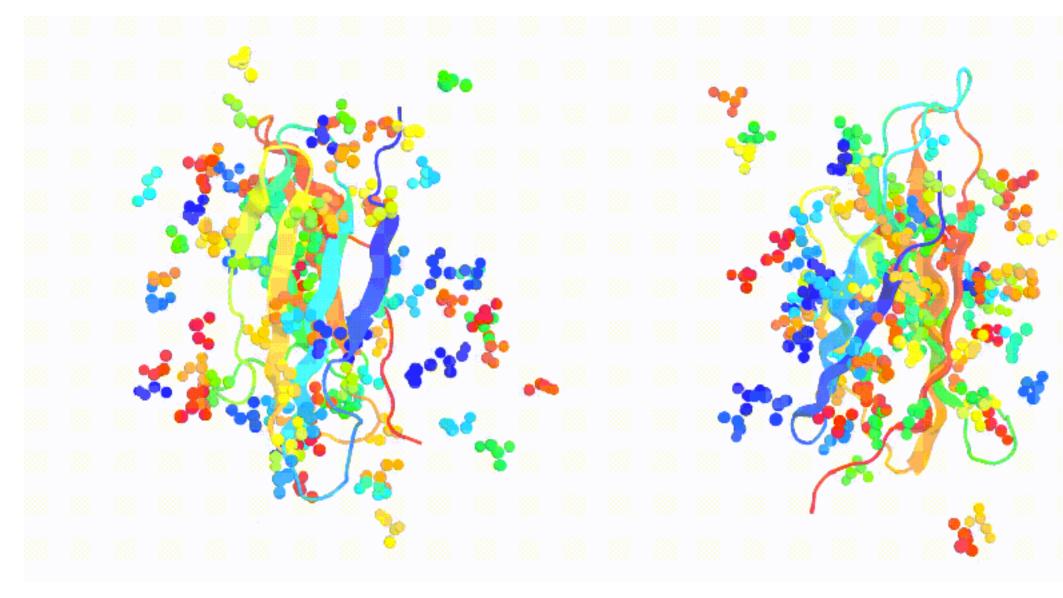


Summary: FrameDiff

Desiderata

- 1. Generate high quality structures. 🔽
- 2. Generate **diverse** structures.
- 3. Generate **novel** structures.
- 4. Generate **functional** structures.

Shift to flow matching

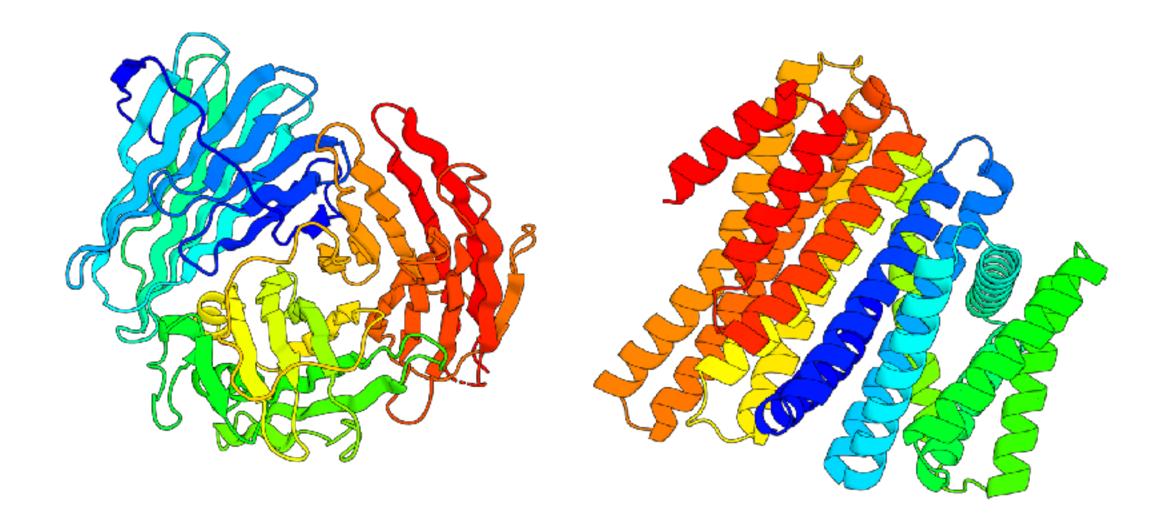


FrameFlow

FrameDiff

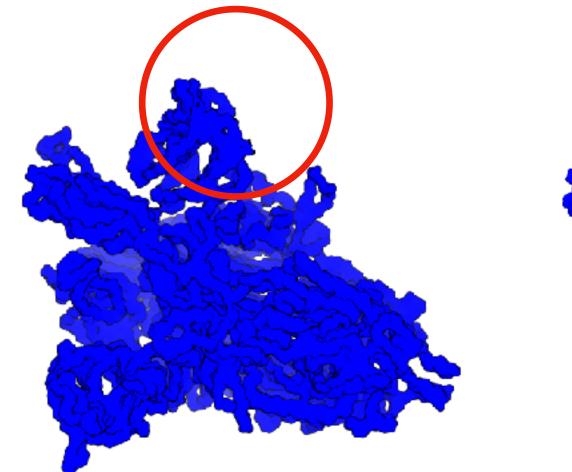
Protein generation paradigms

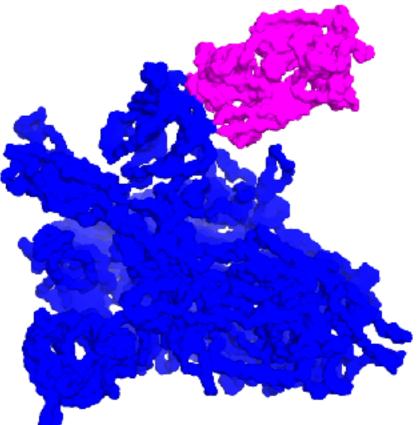
Unconditional generation



P(x)

Next: Conditional generation





Condition \mathcal{Y}

 $P(x \mid y)$

Diffusion model for protein design

Article

Denovo design of protein structure and function with RF diffusion

https://doi.org/10.1038/s41586-023-06415-8

Received: 14 December 2022

Accepted: 7 July 2023

Published online: 11 July 2023

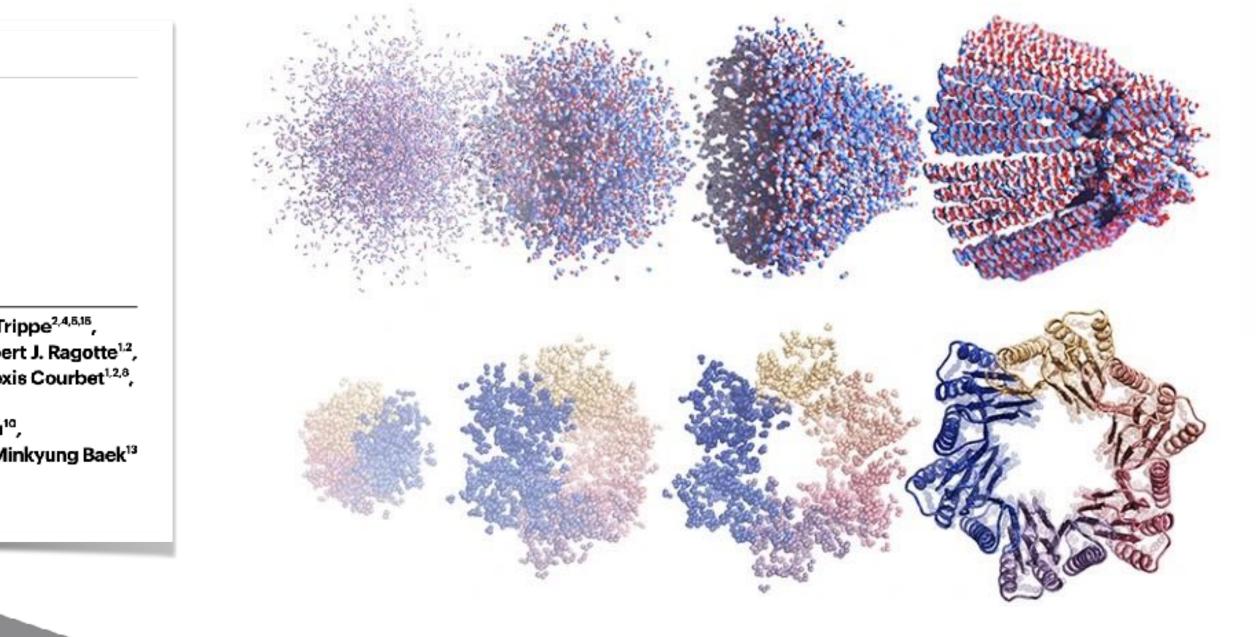
Open access

Check for updates

Joseph L. Watson^{1,2,15}, David Juergens^{1,2,3,15}, Nathaniel R. Bennett^{1,2,3,15}, Brian L. Trippe^{2,4,5,15}, Jason Yim^{2,6,15}, Helen E. Eisenach^{1,2,15}, Woody Ahern^{1,2,7,15}, Andrew J. Borst^{1,2}, Robert J. Ragotte^{1,2}, Lukas F. Milles^{1,2}, Basile I. M. Wicky^{1,2}, Nikita Hanikel^{1,2}, Samuel J. Pellock^{1,2}, Alexis Courbet^{1,2,8}, William Sheffler^{1,2}, Jue Wang^{1,2}, Preetham Venkatesh^{1,2,9}, Isaac Sappington^{1,2,9}, Susana Vázquez Torres^{1,2,9}, Anna Lauko^{1,2,9}, Valentin De Bortoli⁸, Emile Mathieu¹⁰, Sergey Ovchinnikov^{11,12}, Regina Barzilay⁶, Tommi S. Jaakkola⁶, Frank DiMaio^{1,2}, Minkyung Baek¹³ & David Baker^{1,2,14}

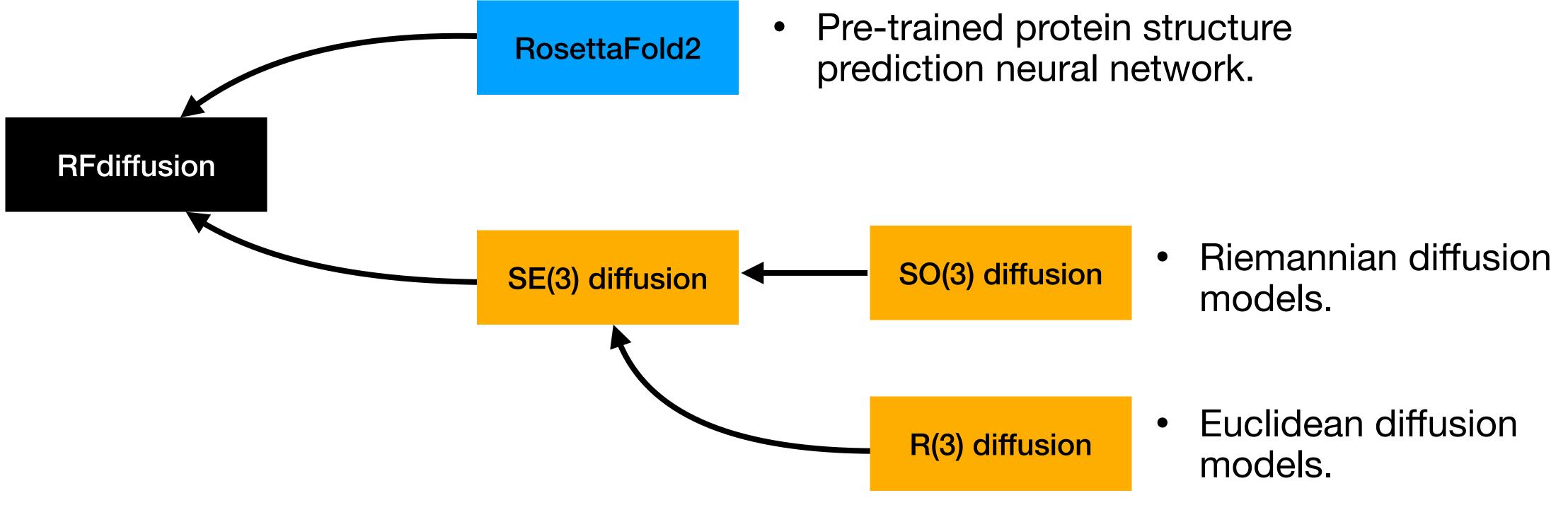
Protein Design

UNIVERSITY of WASHINGTON

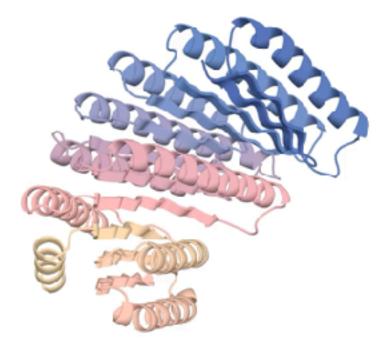


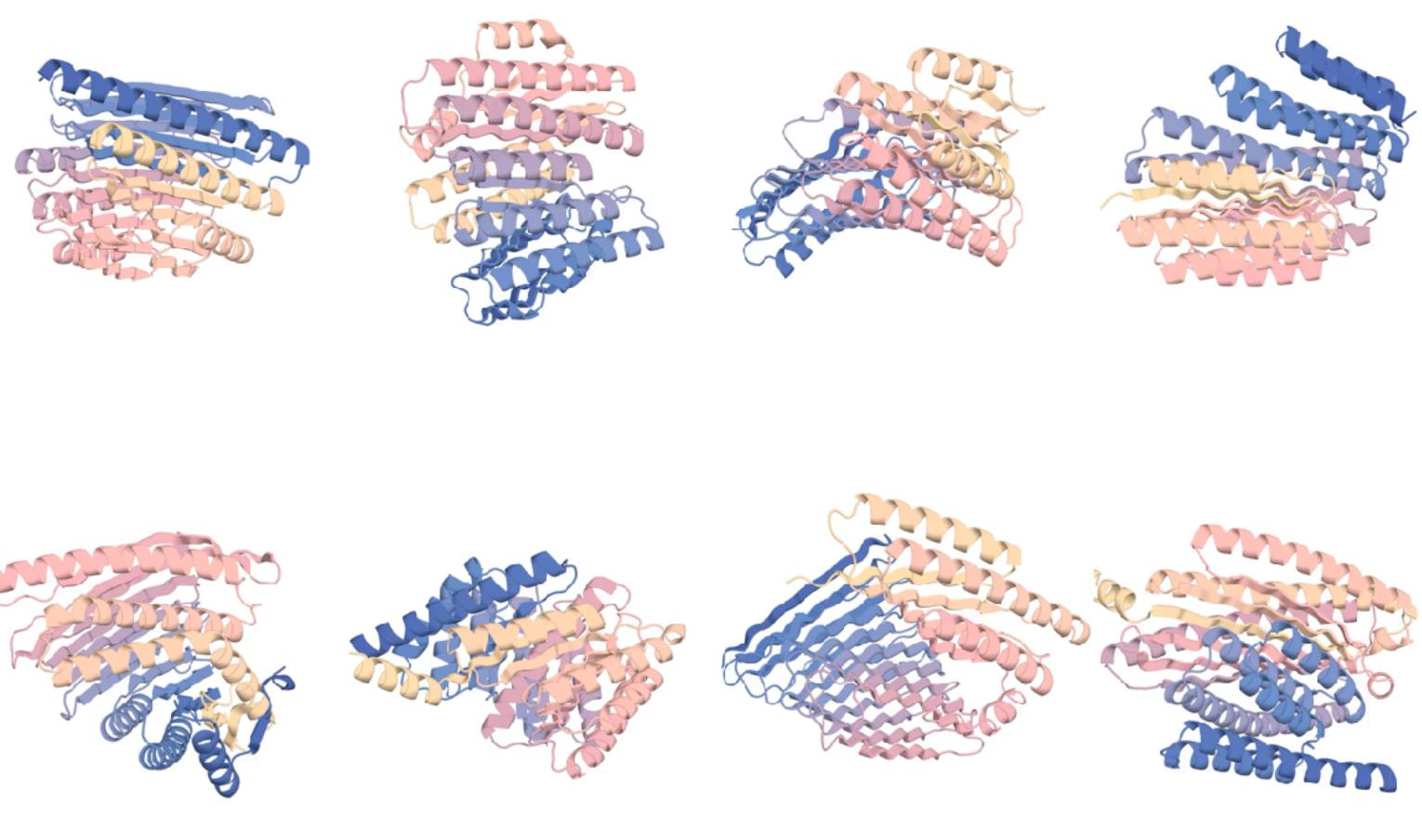
RosettaFold diffusion

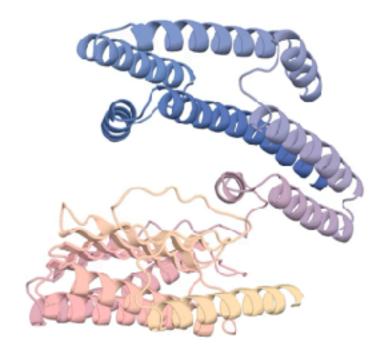
RosettaFold diffusion is a culmination of multiple ideas.

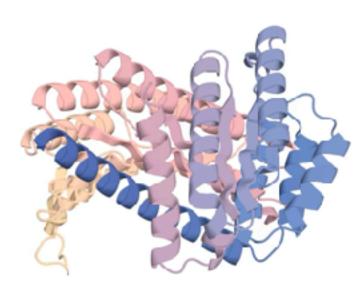


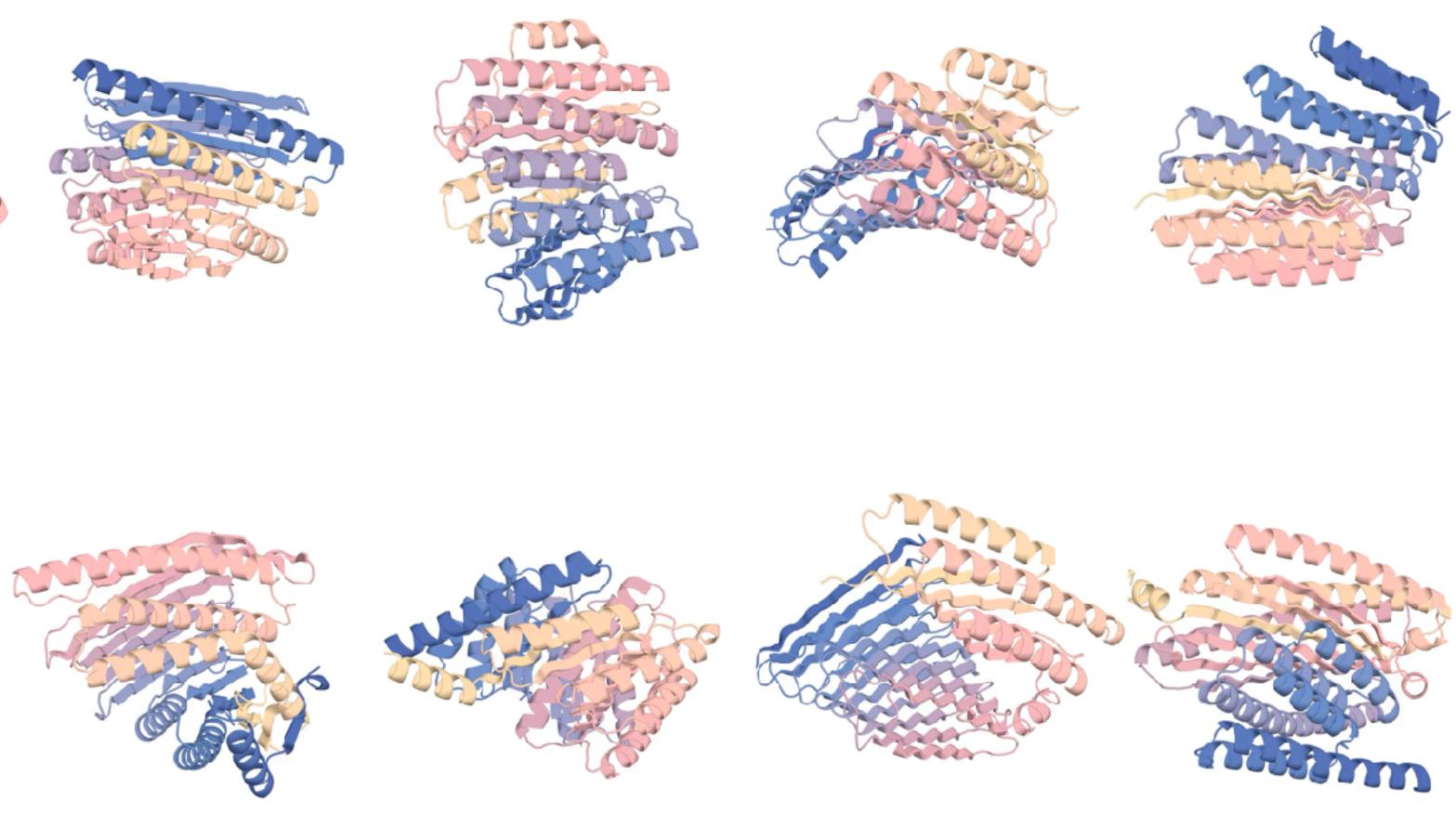
Pre-training improves unconditional generation





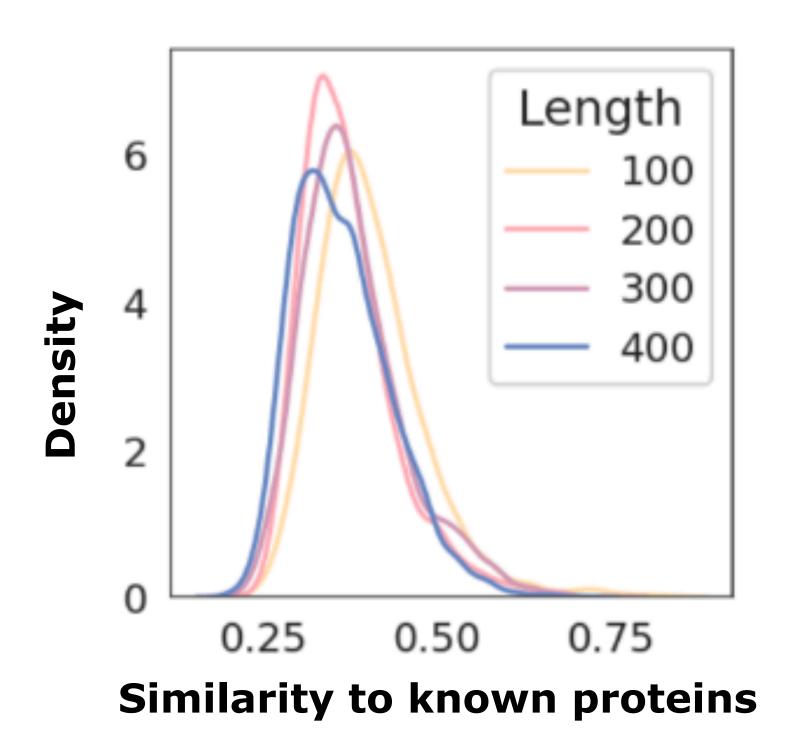






Quantifying novelty

Similarity to closest example in PDB





AI generated protein Most similar known protein

Superimposition

Conditional generation X_0 X_T



Conditional diffusion guidance

How to guide structures towards specific functions and higher quality?

> **Solution**: Inspired by classifier guidance, guide with potentials.

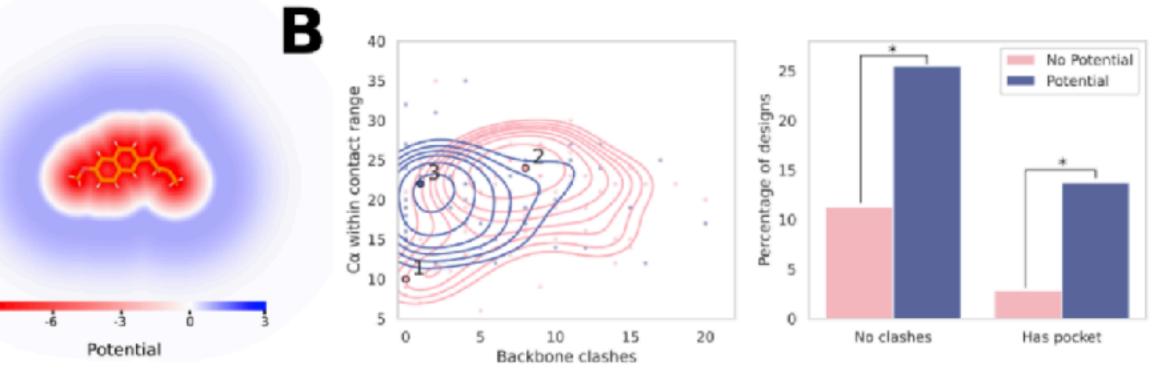
Classifier guidance:

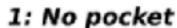
 $\nabla_{x^{(t)}} \log p(x^{(t)}) + \omega \nabla_{x^{(t)}} \log p(y = 1 | x^{(t)})$

Potential guidance:

 $\nabla_{x^{(t)}} \log p(x^{(t)}) + \omega \nabla_{x^{(t)}} P(x^{(t)})$

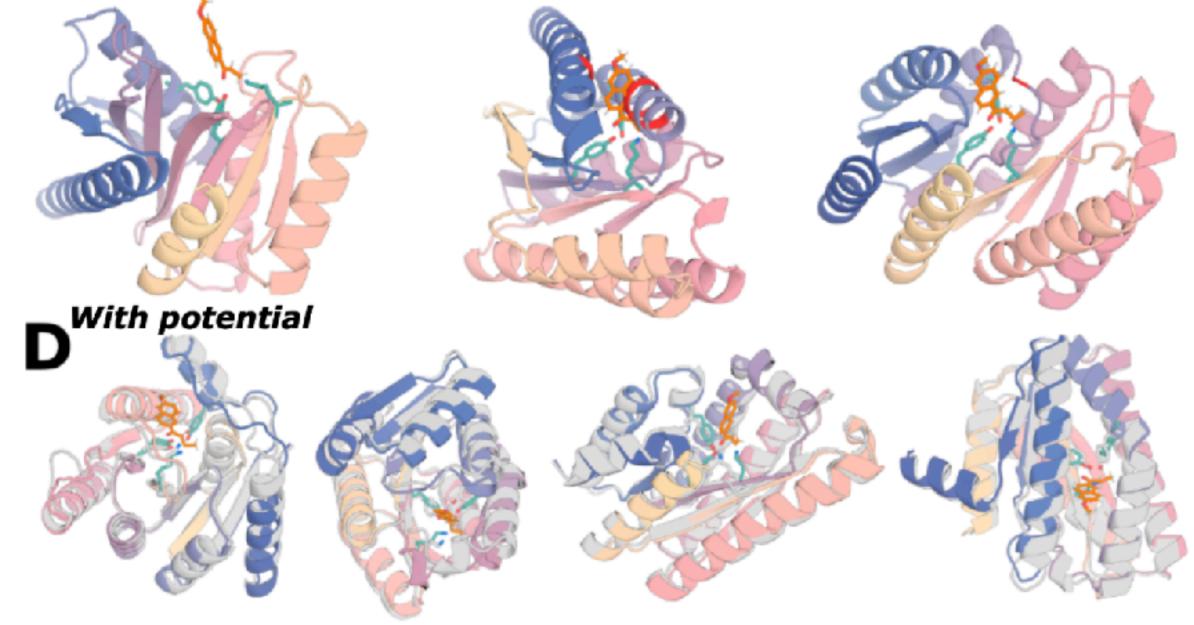
Α





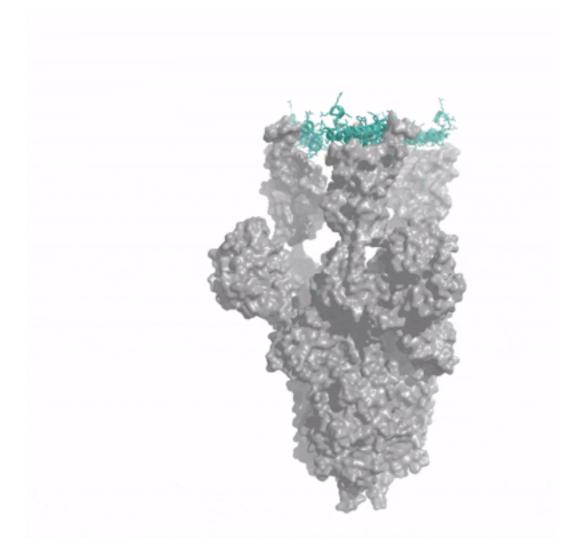
2: Clashes

3: Pocket



Binder generation

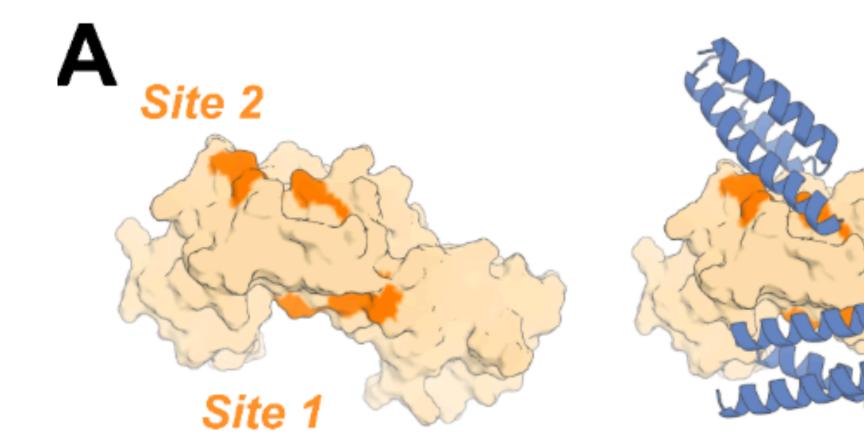
Binder generation



Symmetric complex binder and scaffolding

Binder design

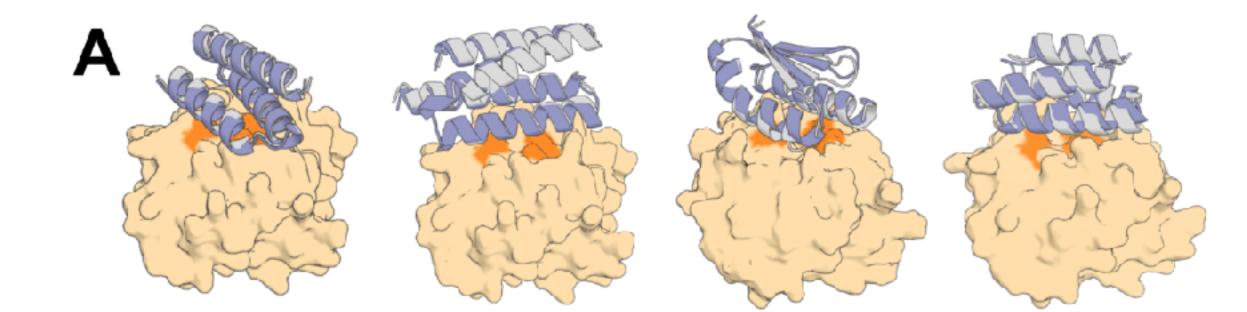
Guide binder generation towards hot spot residues.



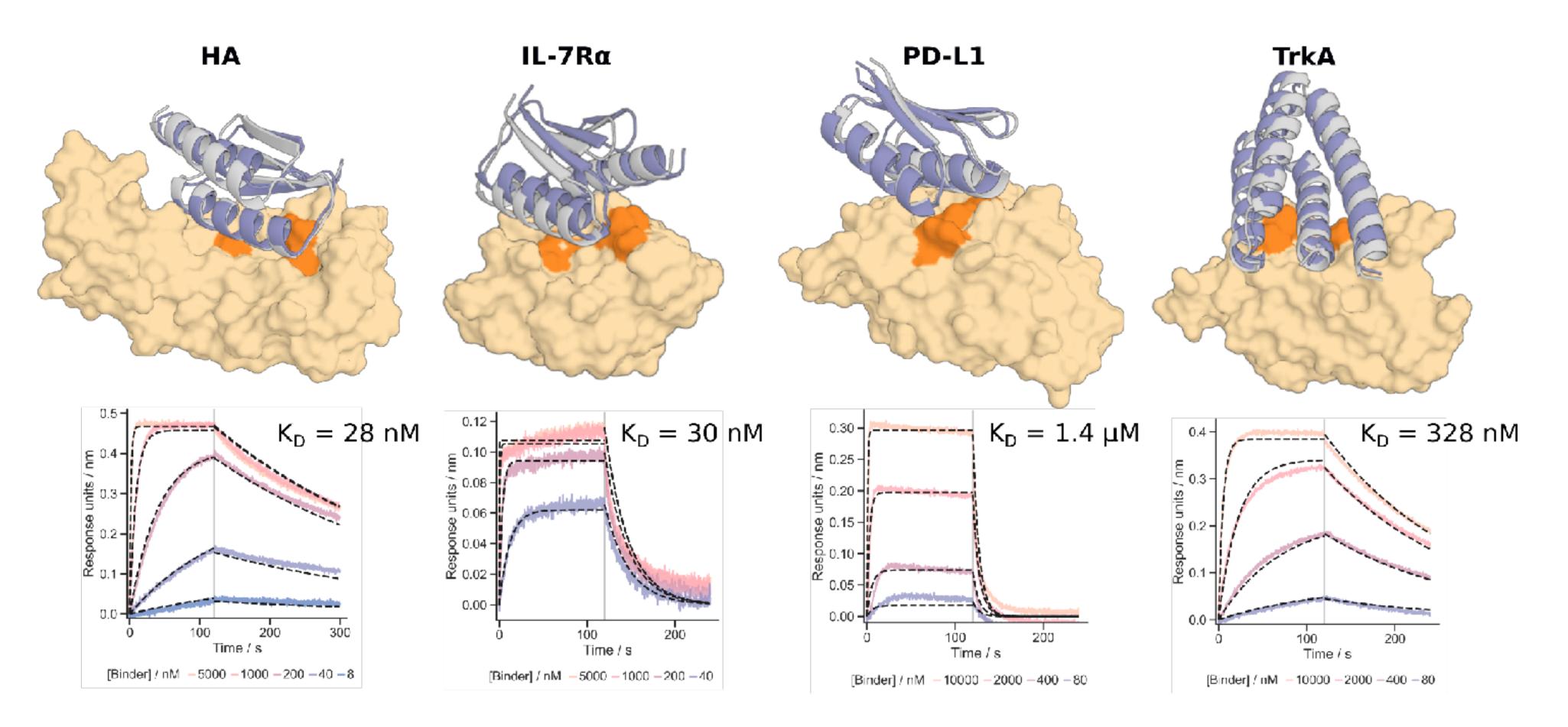
Additionally condition the fold topology. Ferredoxin Fold Helical Bundle



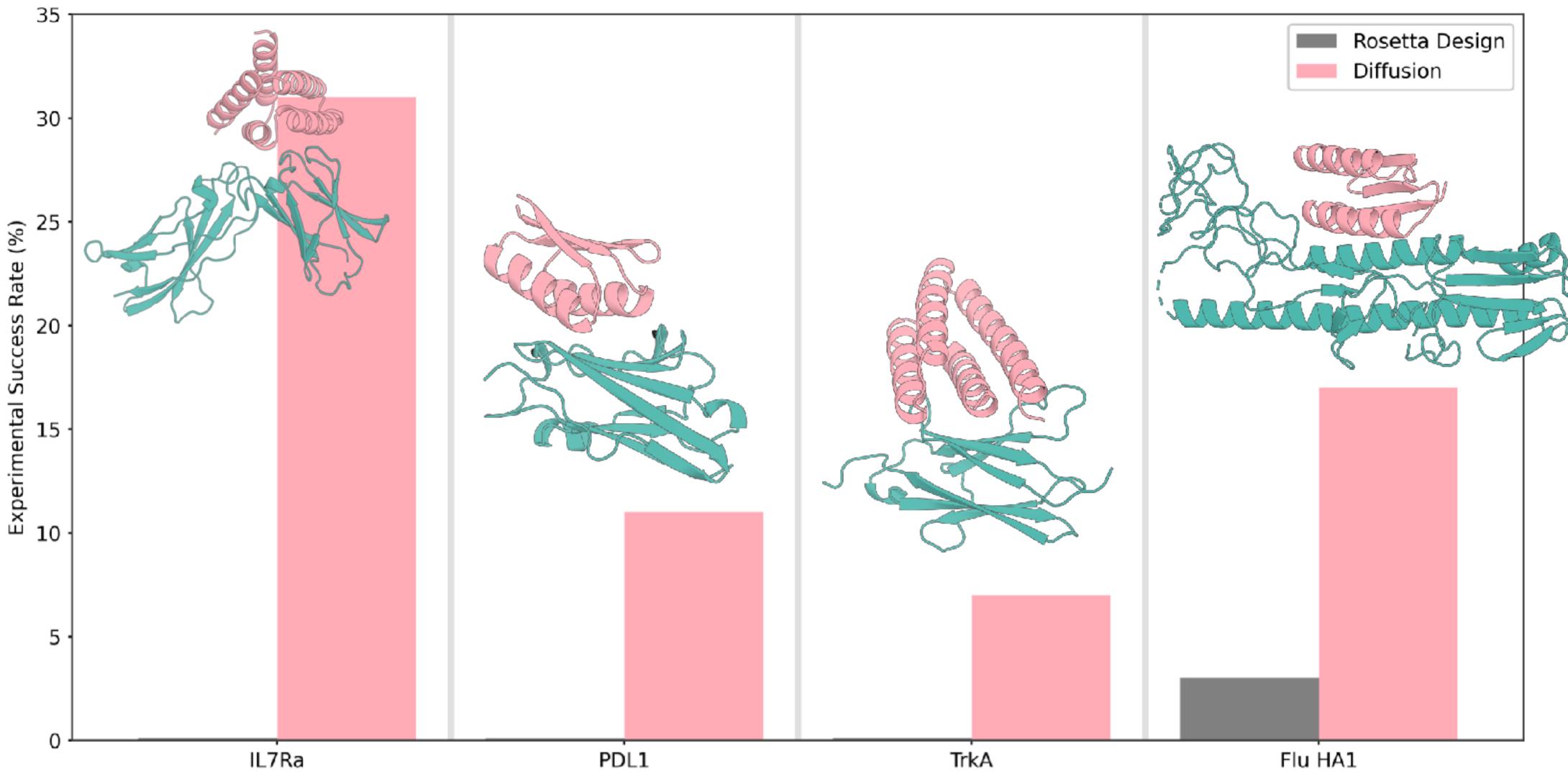
Or allow unconstrained folds.



Wet-lab validation De novo binder design

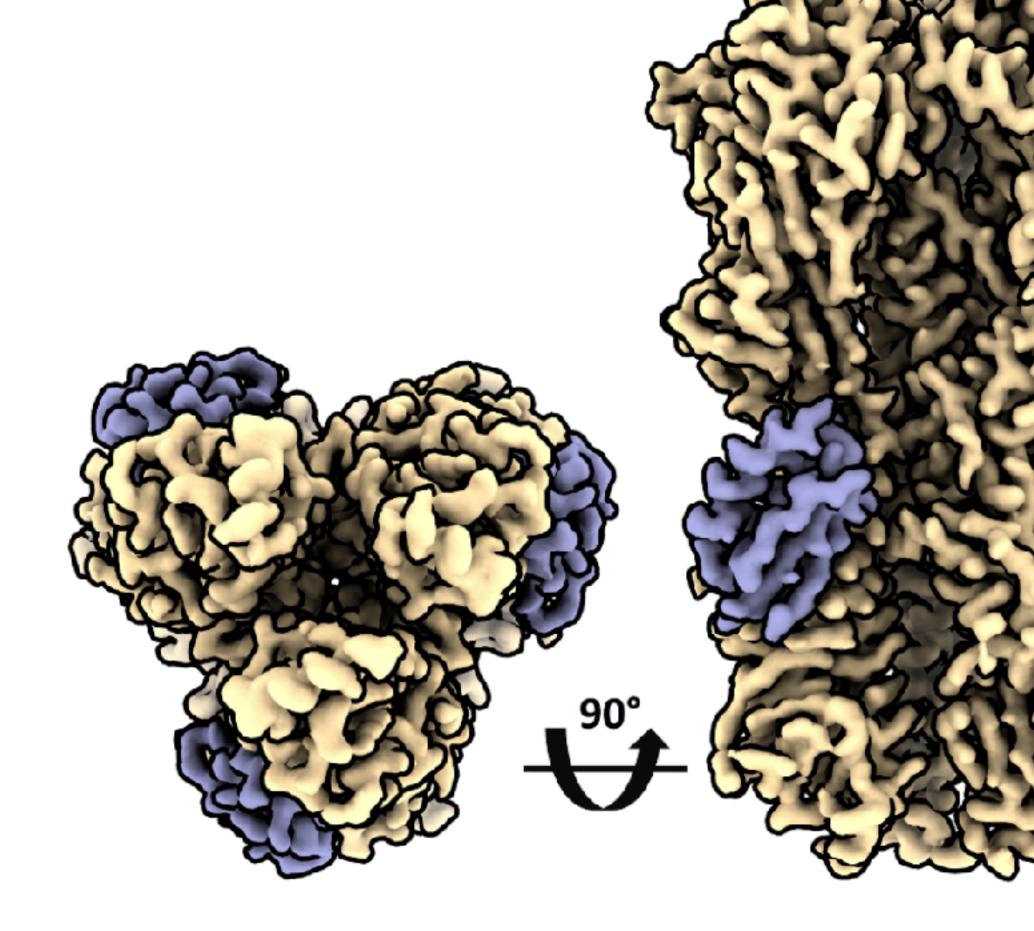


Orders of magnitude higher success than previous

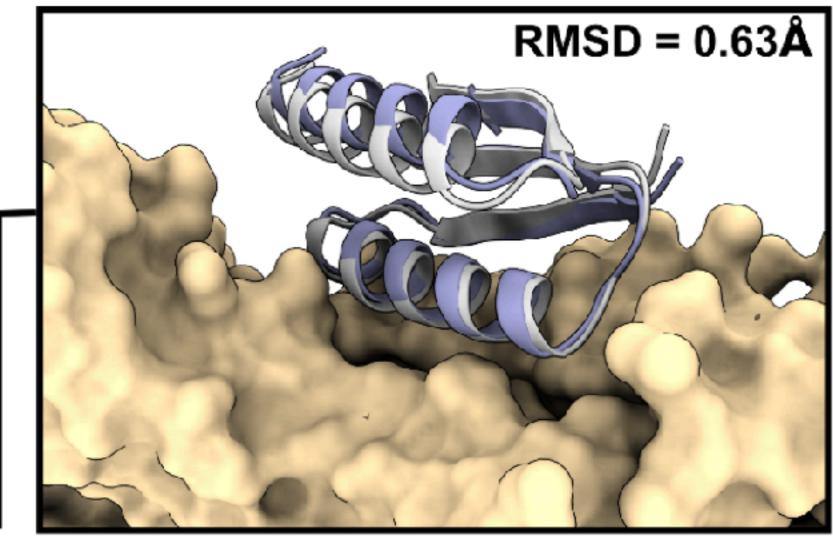


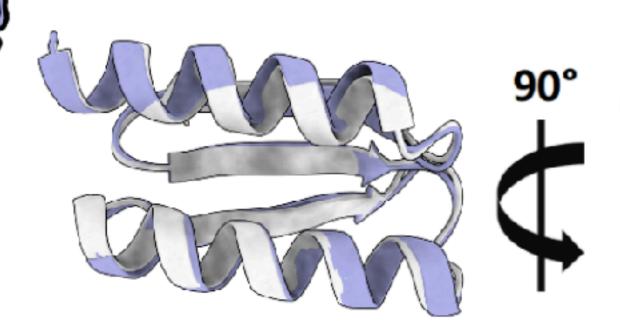
Structural characterization Binder design

Flu virus protein

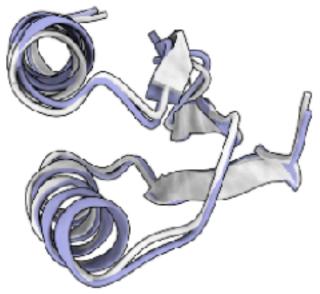


Close match between design and real protein structure



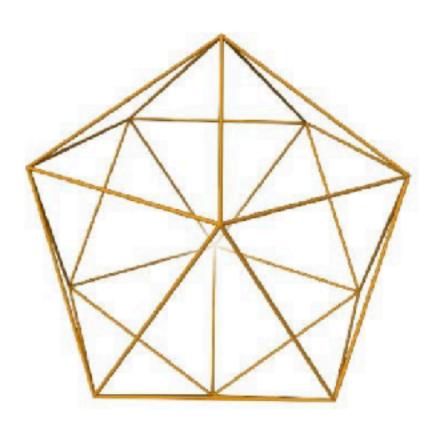


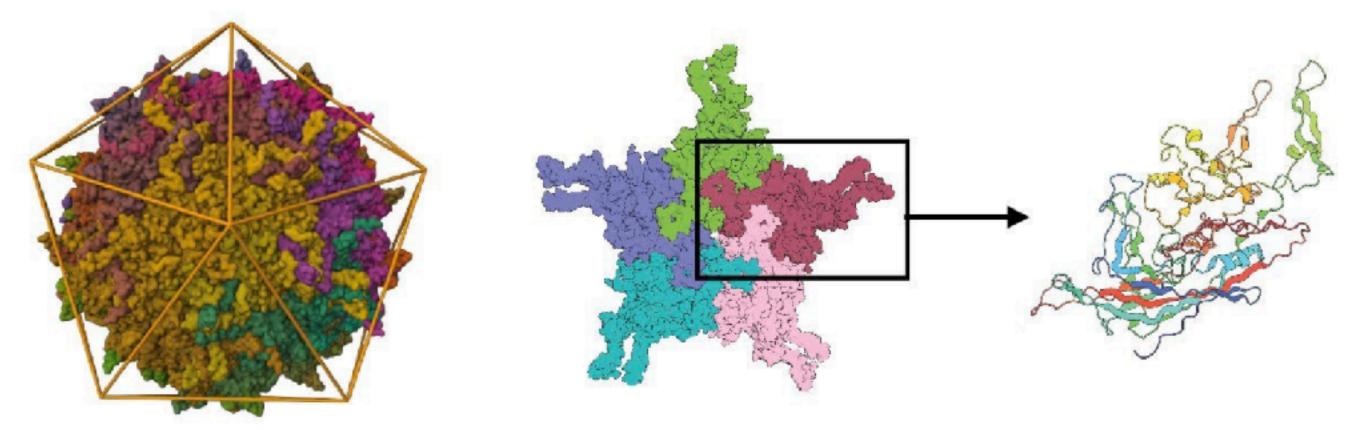
SOur binder



RMSD = 0.60Å

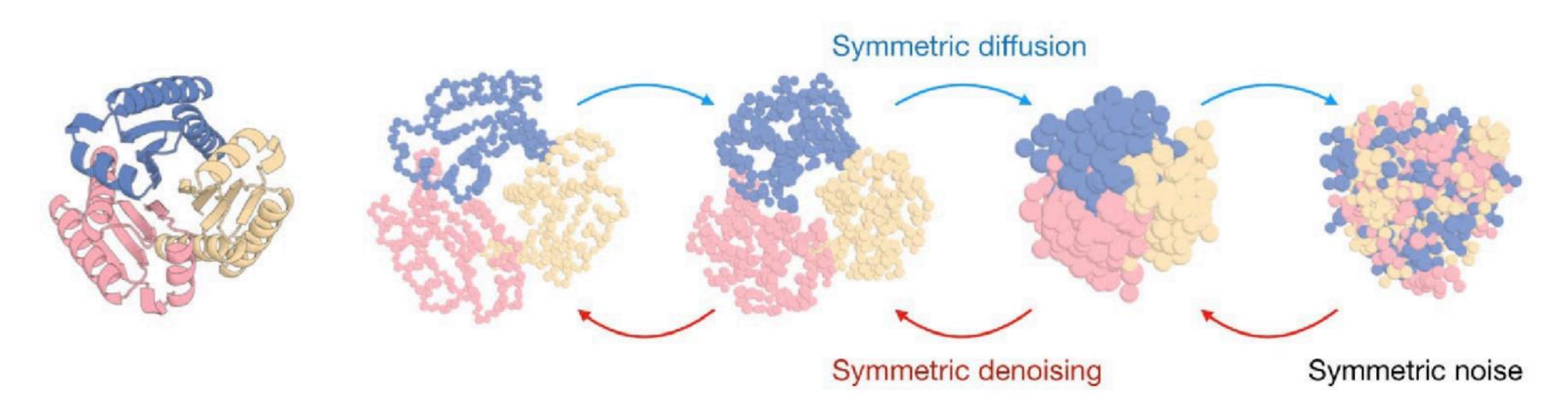
Symmetric protein design





(a) Regular icosahedron

(b) AAV-DJ structure PDB: 3J1Q



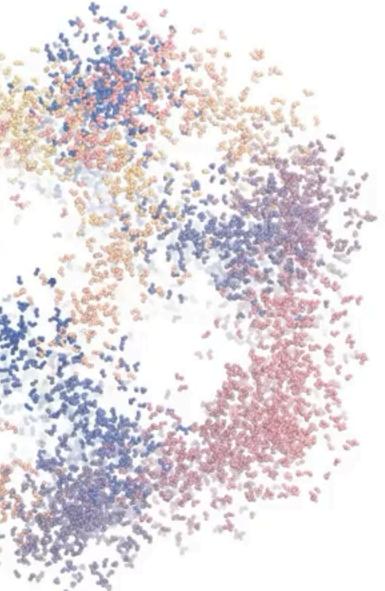
(e) C3 symmetric complex

(c) 1 of 12 pentamer faces on AAV-DJ

(d) Asymmetric unit of AAV-DJ

(f) Symmetric noising with SDE and symmetric denoising with neural network

Symmetric protein design



Wet-lab validation Symmetric complex design



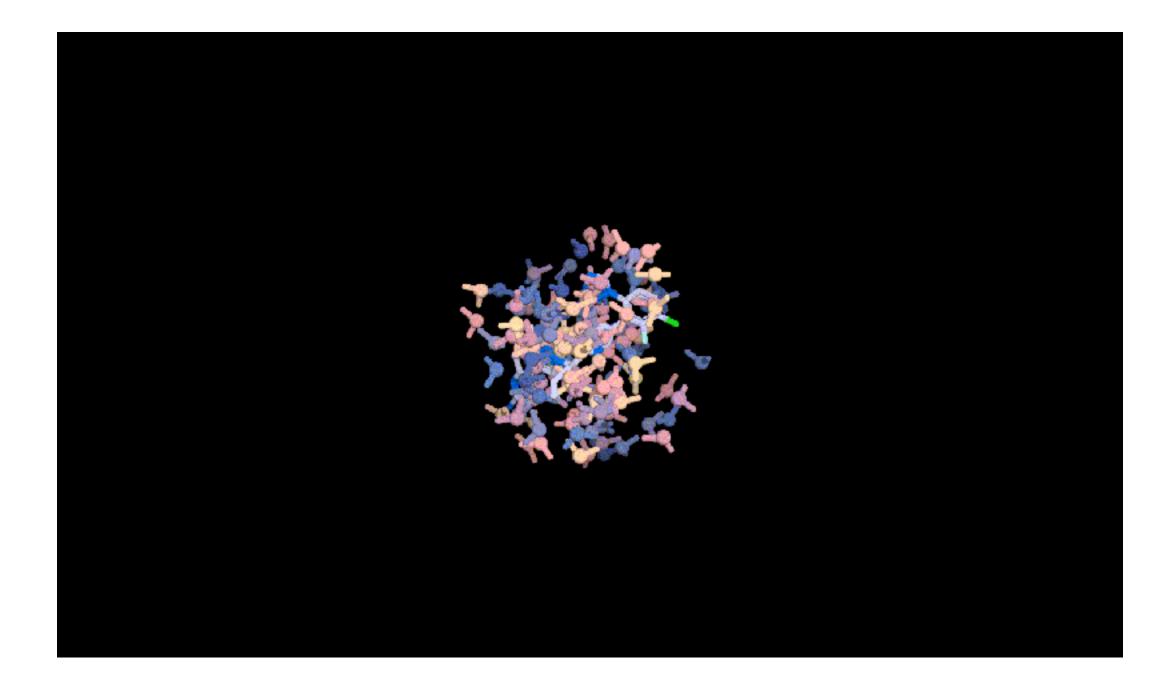
RFdiffusion follow-ups

Generalized biomolecular modeling and design with **RoseTTAFold All-Atom**

ROHITH KRISHNA (D), JUE WANG (D), WOODY AHERN (D), PASCAL STURMFELS, PREETHAM VENKATESH (D), INDREK KALVET (D), GYU RIE LEE (D),

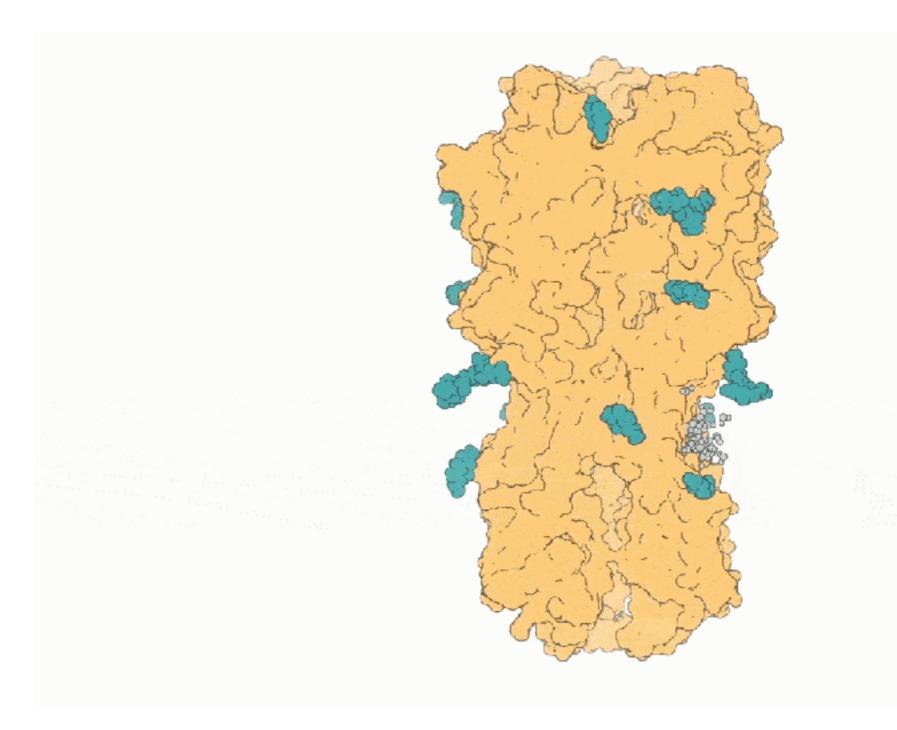
FELIX S. MOREY-BURROWS (D), IVAN ANISHCHENKO, [...], AND DAVID BAKER (D)

+12 authors Authors Info & Affiliations



Atomically accurate de novo design of single-domain antibodies

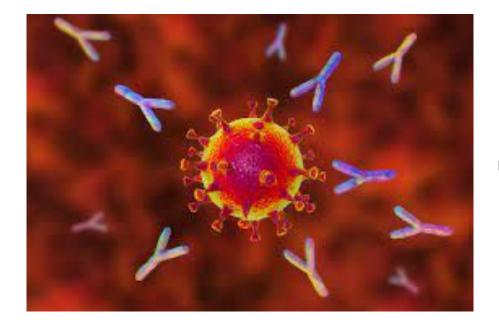
Nathaniel R. Bennett^{‡1,2,3}, Joseph L. Watson*^{‡1,2}, Robert J. Ragotte^{‡1,2}, Andrew J. Borst^{‡1,2}, Déjenaé L. See^{#1,2,4}, Connor Weidle^{#1,2}, Riti Biswas^{1,2,3}, Ellen L. Shrock^{1,2}, Philip J. Y. Leung^{1,2,3}, Buwei Huang^{1,2,4}, Inna Goreshnik^{1,2,5}, Russell Ault^{6,7}, Kenneth D. Carr², Benedikt Singer^{1,2}, Cameron Criswell^{1,2}, Dionne Vafeados², Mariana Garcia Sanchez², Ho Min Kim^{8,9}, Susana Vázquez Torres^{1,2,10}, Sidney Chan², David Baker^{*1,2,5}



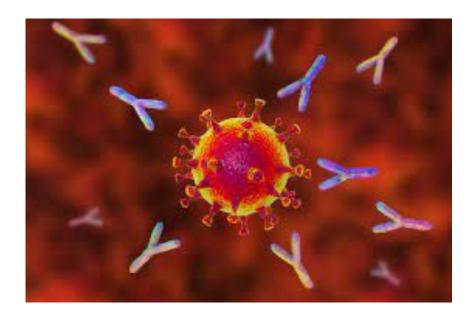
Desiderata

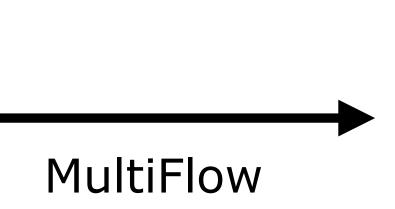
- 1. Generate **high quality** structures.
- 2. Generate **diverse** structures.
- 3. Generate **novel** structures.
- 4. Generate **functional** structures.

Towards co-design



Function





RFdiffusion /

FrameFlow

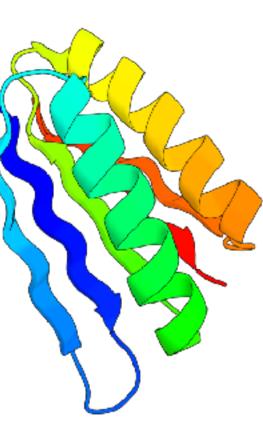
Function

Structure

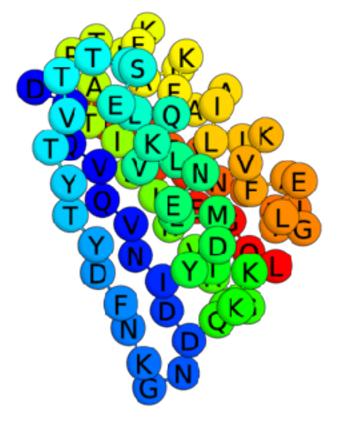
Sequence

Generate both sequence and structure jointly (i.e. codesign)

Structure



ProteinMPNN



Sequence

MultiFlow

Translations:

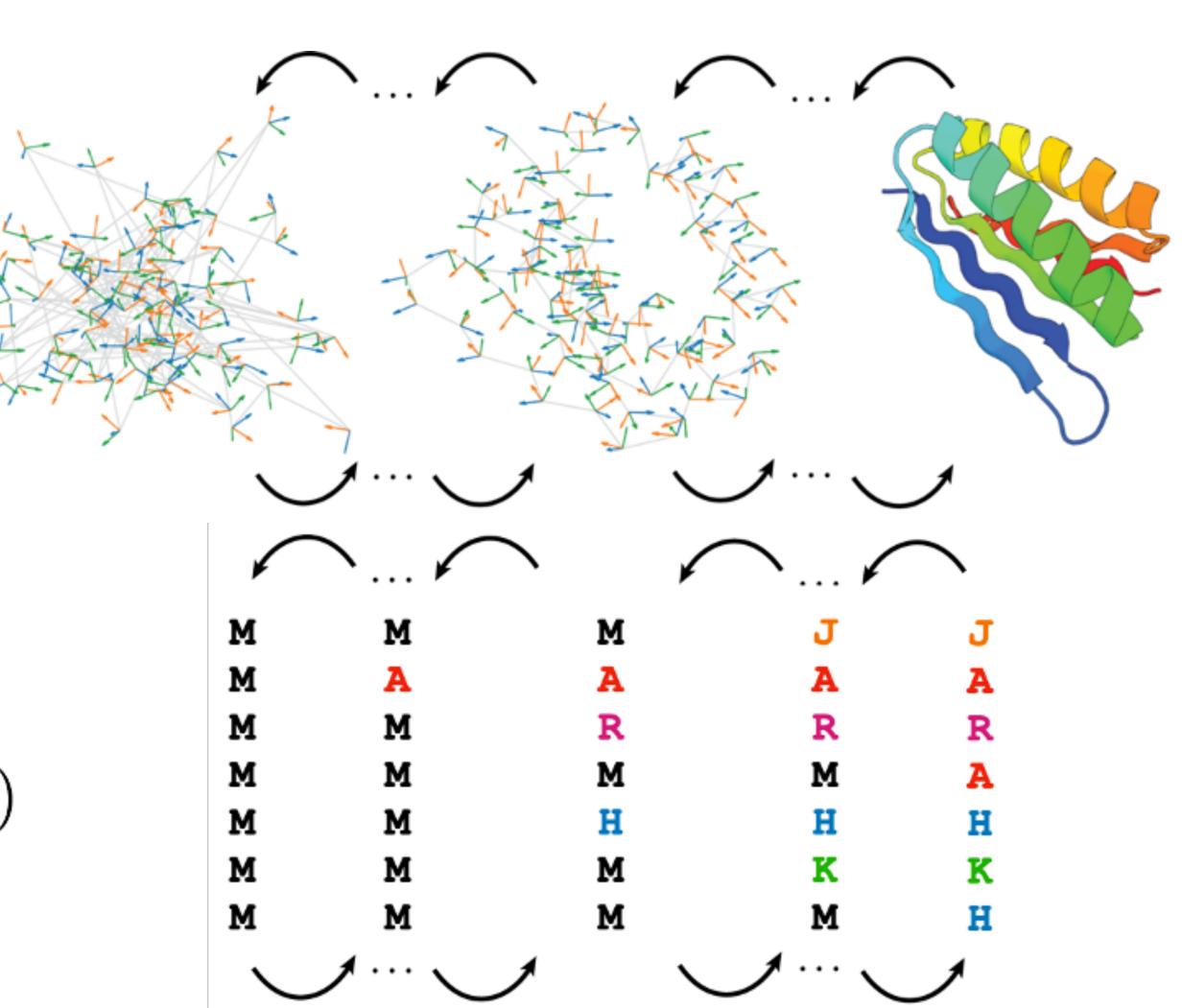
$$x_t = tx_1 + (1-t)x_0$$

Rotations:

$$r_t = \exp_{r_0}\left(t\log_{r_0}(r_1)\right)$$

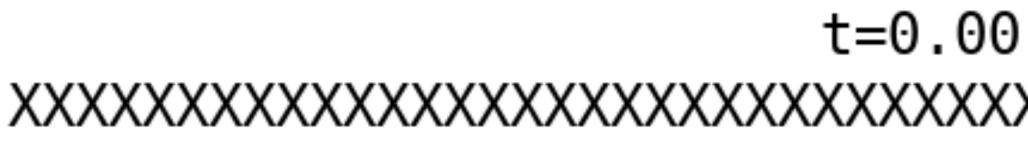
Sequence:

 $a_{\tilde{t}} \sim \operatorname{Cat}(\tilde{t}\delta\{a_1, a_{\tilde{t}}\} + (1 - \tilde{t})\delta\{\mathbf{M}, a_{\tilde{t}}\})$

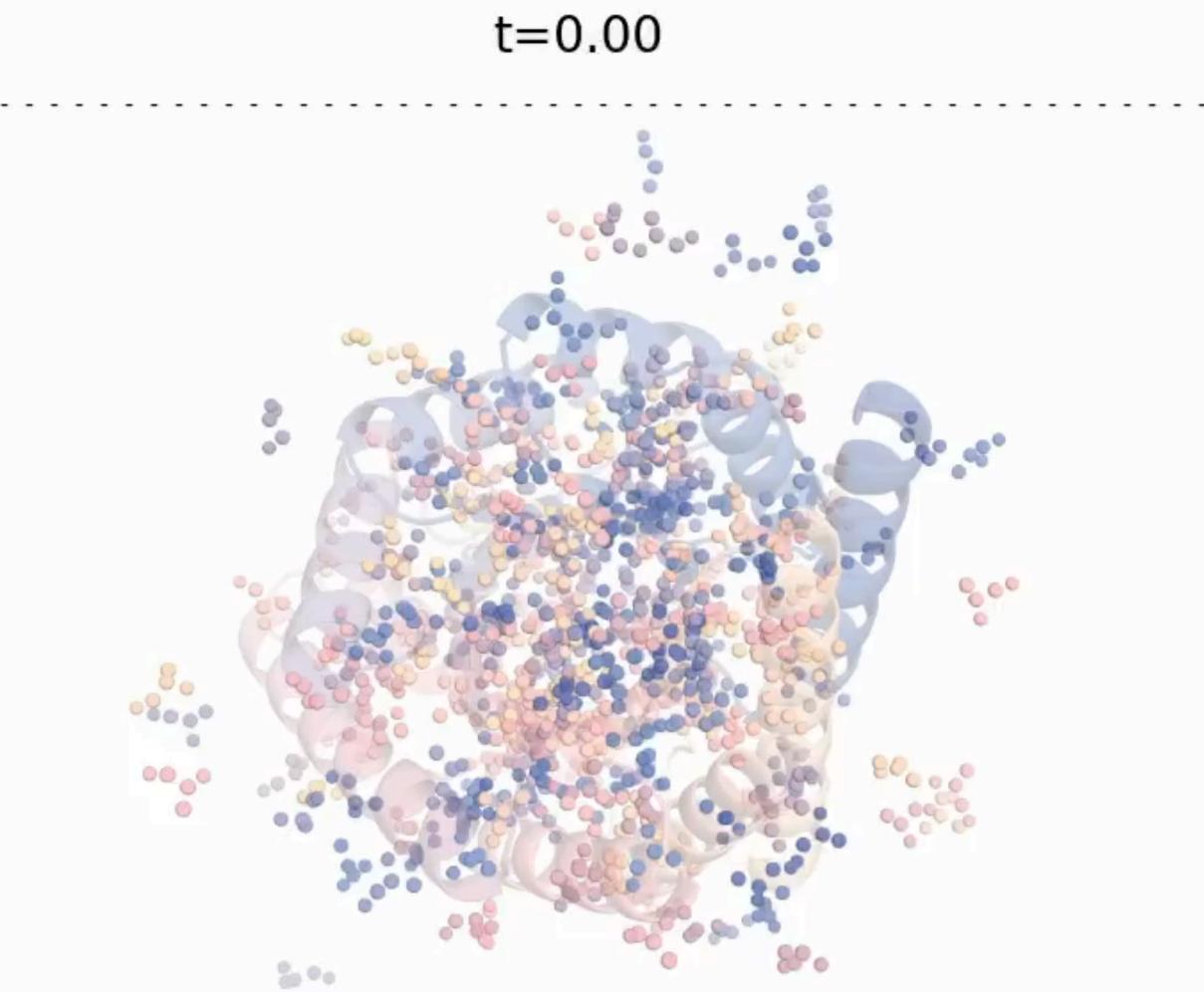


Our approach: discrete flow matching

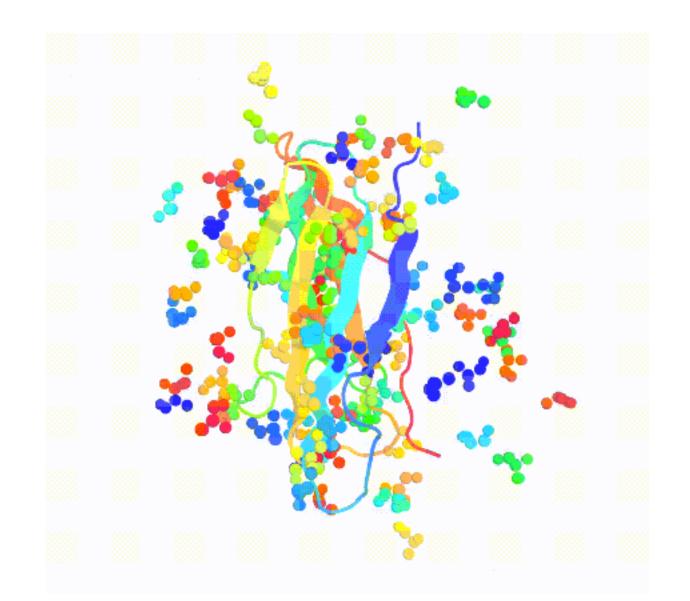
Continuous time generative model over discrete data



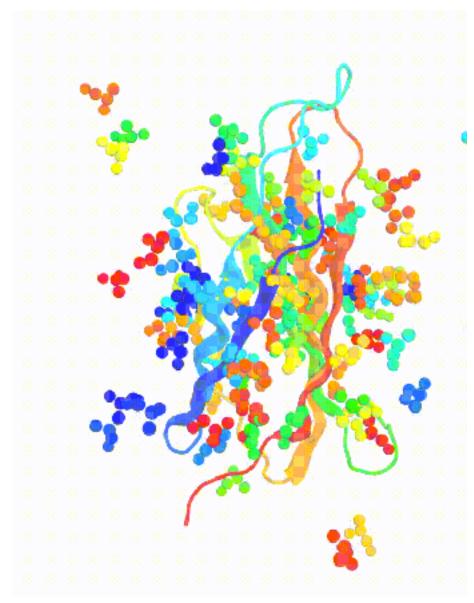
Sequence and structure co-design MultiFlow



Technical SummaryDiffusion: FrameDiff(Riemannian) Flows: FrameFlow

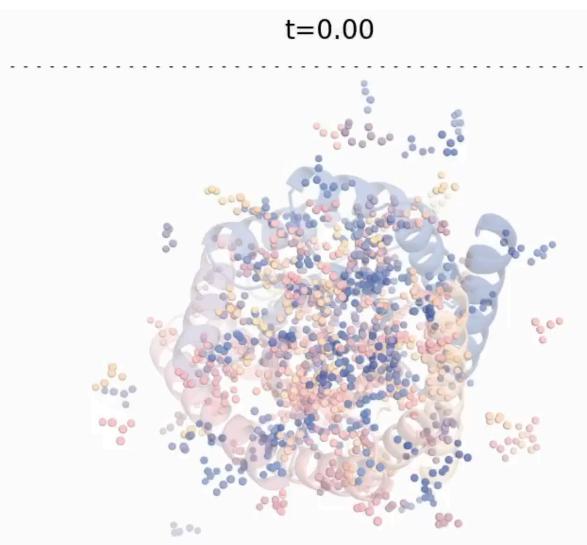


Stochastic Differential Equation (SDE)



Ordinary Differential equation (ODE)

Discrete Flows: MultiFlow



Continuous Time Markov Chain (CTMC)

What's next? **Going beyond proteins**

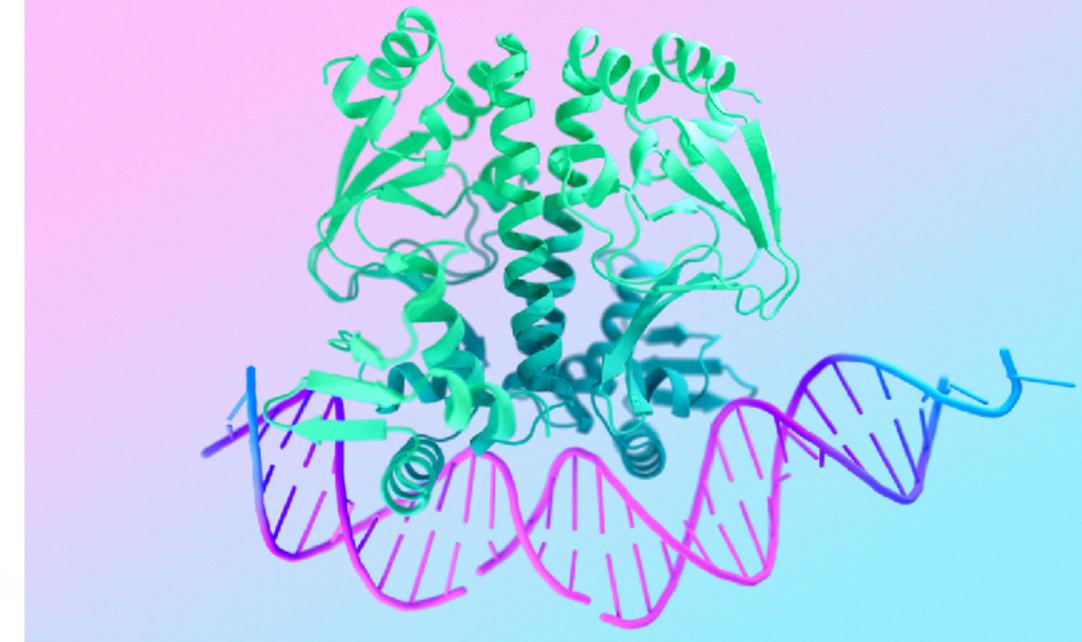
Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

https://doi.org/10.1038/s41586-024-07	7487-w
Received: 19 December 2023	
Accepted: 29 April 2024	
Published online: 8 May 2024	
Open access	
Check for updates	

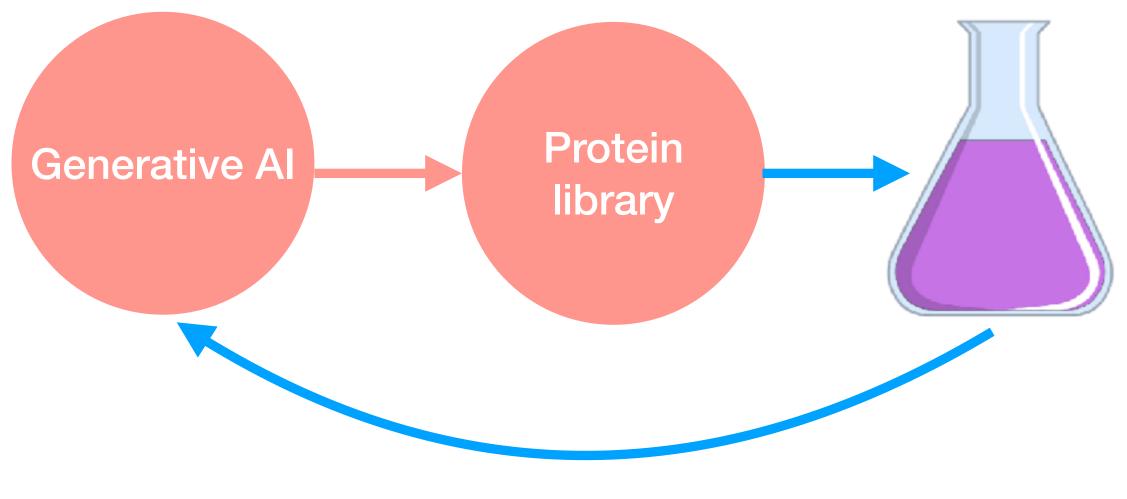
sh Abramson^{1,7}, Jonas Adler^{1,7}, Jack Dunger^{1,7}, Richard Evans^{1,7}, Tim Green^{1,7}, lexander Pritzel^{1,7}, Olaf Ronneberger^{1,7}, Lindsay Willmore^{1,7}, Andrew J. Ballard¹, oshua Bambrick², Sebastian W. Bodenstein¹, David A. Evans¹, Chia-Chun Hung², ichael O'Neill¹, David Reiman¹, Kathryn Tunyasuvunakool¹, Zachary Wu¹, Akvilė Žemgulytė¹, rini Arvaniti³, Charles Beattie³, Ottavia Bertolli³, Alex Bridgland³, Alexey Cherepanov⁴, liles Congreve⁴, Alexander I. Cowen-Rivers³, Andrew Cowie³, Michael Figurnov³, abian B. Fuchs³, Hannah Gladman³, Rishub Jain³, Yousuf A. Khan^{3,5}, Caroline M. R. Low⁴, uba Perlin³, Anna Potapenko³, Pascal Savy⁴, Sukhdeep Singh³, Adrian Stecula⁴, shok Thillaisundaram³, Catherine Tong⁴, Sergei Yakneen⁴, Ellen D. Zhong^{3,6}, ichal Zielinski³, Augustin Žídek³, Victor Bapst^{1,8}, Pushmeet Kohli^{1,8}, Max Jaderberg^{2,8} Demis Hassabis^{1,2,8}[™] & John M. Jumper^{1,8}[™]

AlphaFold3 is also a diffusion model! lacksquare



What's next? **Fine-tuning / post-training**

- 1. Generate diverse set of functional proteins



2. Learn from experiments and iteratively improve

Experiment

Fail or success data

References

[1] **Jason Yim***, Brian L. Trippe*, Valentin De Bortoli*, Emile Mathieu*, Arnaud Doucet, Regina Barzilay, Tommi S. Jaakkola. *SE (3) diffusion model with application to protein backbone generation*. International Conference of Machine Learning, July 23, 2023.

[2] **Jason Yim**, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger, Jose Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastian S. Veeling, Regina Barzilay, Frank Noe, Tommi S. Jaakkola. *Improved motif-scaffolding with SE(3) flow matching*. Transactions on Machine Learning Research, July 18, 2024.

[3] Andrew Campbell^{*}, **Jason Yim**^{*}, Regina Barzilay, Tom Rainforth, Tommi Jaakkola. Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design. International Conference of Machine Learning, July 23, 2024.

[4] Watson, J. L.*, Juergens, D.*, Bennett, N. R.*, Trippe, B. L.*, **Yim, J**.*, Eisenach, H. E.*, ... & Baker, D. (2023). De novo design of protein structure and function with RFdiffusion. Nature, 620(7976), 1089–1100.

* Equal contribution

Contact

- **Email**:
 - Work: jyim@mit.edu
 - Personal: jasonkyuyim@gmail.com

• Advisors: Regina Barzilay, Tommi Jaakkola

- Website: https://people.csail.mit.edu/jyim/
- **X / Twitter**: <u>https://x.com/json_yim</u>
- Linkedin: https://www.linkedin.com/in/ jason-yim-92173b97/

