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What do proteins do?
• Nature has evolved proteins to perform necessary functions for life.

Proteins performing DNA replicationFor example, DNA replication

• Humans have engineered proteins for specific needs.

Vaccine & drugs
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Plastic degrading 
enzymes
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Genome editing

Image: Amanda Heidt via The Scientist



Why AI for proteins?

• Drug development crisis.


• Takes ~10 years and ~$2.6 billion 
to make a single drug.


• Can AI accelerate this timeline?

Image: Lindus Health



Protein modeling
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Protein function: simplified example
• How do viruses work?

Virus Cell Cell death, virus replication, 
human gets sick

• How does protein binding stop viruses?

Designed antibodies Prevent infection 
(antibodies have other 

functions as well)



Machine learning is revolutionizing protein design

Sequence Structure

SequenceStructure

StructureFunction





Generative De Novo Protein Design

RFdiffusion
StructureFunction Sequence

ProteinMPNN AlphaFold Final 
designs

Pipeline

Structure  
generation

Sequence  
generation Filtering

Sequence needs to be 
known in order to 

produce the protein
Diffusion models have 

enabled this step



Generative AI is coming to biology



Goal of AI in biomolecular design
Combining generation and optimization into one pipeline with AI. 

1. Generation: Fast production of novel molecular libraries. 

2. Optimization: Efficient fine-tuning from experiments.

Molecule 
library

Generative AI

Experiment

Fail or success data



Overview
1. Protein structure generation 

• FrameDiff [1] 

2. Generative protein design 

• RFdiffusion [4] 

3. Co-design and sequence generation 

• MultiFlow [3] 

4. Outlook

References provided at end



Goal: Diffusion for Protein Structure

1. Generate high quality structures. 

2. Generate diverse structures. 

3. Generate novel structures. 

4. Generate functional structures.



How to model a protein structure?

We tried a version of this 
as the first step in 2022


Issues:


• Difficult to scale, bad 
performance.


• Latest works shows it is 
possible to scale.

Trippe, Yim et al 2022, “Diffusion Probabilistic Modeling of Protein 
Backbones in 3D for the Motif-Scaffolding Problem”



How to model a protein structure?



How to model a protein structure?



Background: Protein Frames



 (noise)p1(x)  (data)p0(x)

Forward process (noising)

 dx = f(x, t)dt + g(t)dB

Reverse process (sampling)

 dx = [ f(x, t) − g(t)2 ∇log pt(x)]dt + g(t)dB

Goal: Diffusion for Protein Frames

Learned by neural 
network.



Diffusion over Riemannian Manifolds
How to diffuse a frame?

Frame (R, x) ∈ SO(3) × ℝ3

Diffuse translations x ∈ ℝ3

Diffuse rotation R ∈ SO(3)



Diffuse translations x ∈ ℝ3

Brownian motion on ℝ3

pt|0 (x(t) |x(0)) = 𝒩(x(t); β(t)x(0), σ(t))

Diffuse rotation R ∈ SO(3)
Brownian motion on SO(3)
pt|0 (R(t) |R(0)) = IGSO3(r(t); r(0), t)
where r(t) = Log(R(t)), r(0) = Log(R(0))

t = 0.0 t = 0.5 t = T

(2D for visualization)

Source: Lilian Weng

Diffusion over Riemannian Manifolds
How to diffuse a frame?



1. Parameterize proteins

Frame Diffusion: Training & Generation

2. Corrupt

4. Starting from pure noise, use 
neural network to sample data.

3. Train neural network to 
uncorrupt

Model



Model architecture

Node features hℓ

• Heavily inspired by AlphaFold2 architecture 
with two main components:

Spatial attention 
biases towards 
local residues

Positional 
attention allows 
global interactions.

Edge features eℓ

Frames Tℓ

Single layer . Full model: stack multiple layers end-to-end.ℓ

• Positional attention 
• Spatial attention

hℓ+1
eℓ+1
Tℓ+1

Neural network



 invarianceSE(3)N

• Invariance requires the following:


• By learning a  equivariant score model.


• Translation invariance: by zero-centering.

SE(3)N

Sampling

(R(T), x(T)) (R(0), x(0))

Rotation

Same protein 
Equal likelihood 
i.e. invariance

Reverse process (sampling)

 dx = [ f(x, t) − g(t)2 ∇log pt(x)]dt + g(t)dB

Needs to be 
equivariant



Unconditional generation
How well does the model sample realistic proteins?
• Generation from only noise with no other conditions.



In-silico Evaluation Metrics

• Realism check: could a sequence exist 
with the AI-generated structure.

New 
Protein

Neural 
network

Sequence
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Network

Prediction

Report RMSD

• Diversity: structurally cluster all 
designable backbones. Report number 
or fraction of clusters.



FrameDiff results

Goal: as many 
samples below this 
line.



FrameDiff results
• In-silico evidence of generalizing beyond PDB (training set)
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Summary: FrameDiff

Desiderata 

1. Generate high quality structures. ✅ 

2. Generate diverse structures. ✅ 

3. Generate novel structures. ✅ 

4. Generate functional structures. 

FrameDiff FrameFlow

Shift to flow matching



Protein generation paradigms

P(x)

Unconditional generation Next: Conditional generation

P(x |y)Condition y



Diffusion model for protein design



RFdiffusion

RosettaFold diffusion
• RosettaFold diffusion is a culmination of multiple ideas.

RosettaFold2

SE(3) diffusion SO(3) diffusion

R(3) diffusion

• Pre-trained protein structure 
prediction neural network.

• Riemannian diffusion 
models.

• Euclidean diffusion 
models.



Pre-training improves unconditional generation



Quantifying novelty
Similarity to closest example in PDB

Similarity to known proteins

D
e
n
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AI generated 
protein

Most similar 
known protein Superimposition



Conditional generation



Conditional diffusion guidance
How to guide structures towards 
specific functions and higher quality?



Binder generation

Binder generation Symmetric complex 
binder and scaffolding



Binder design
Guide binder generation towards hot spot residues.

Additionally condition the fold topology. Or allow unconstrained folds.



Wet-lab validation
De novo binder design



Orders of magnitude higher success than previous



Structural characterization
Binder design Close match between design 

and real protein structureFlu virus protein

Our binder



Symmetric protein design



Symmetric protein design



Wet-lab validation
Symmetric complex design

RFdiffusion AlphaFold2 2D class average 3D reconstruction



RFdiffusion follow-ups



Takeaway

Desiderata 

1. Generate high quality structures. ✅ 

2. Generate diverse structures. ✅ 

3. Generate novel structures. ✅ 

4. Generate functional structures. ✅



Towards co-design

ProteinMPNN

Structure SequenceFunction

RFdiffusion / 
FrameFlow

Structure SequenceFunction

MultiFlow

Generate both 
sequence and structure 
jointly (i.e. codesign)



MultiFlow



Our approach: discrete flow matching

Continuous time generative model over discrete data 



Sequence and structure co-design
MultiFlow



Technical Summary
Diffusion: FrameDiff (Riemannian) Flows: FrameFlow Discrete Flows: MultiFlow

Stochastic Differential Equation (SDE) Ordinary Differential equation (ODE) Continuous Time Markov Chain (CTMC)



What’s next?
Going beyond proteins

• AlphaFold3 is also a diffusion model!



What’s next?
Fine-tuning / post-training

1. Generate diverse set of functional proteins 

2. Learn from experiments and iteratively improve 

Protein 
library

Generative AI

Experiment

Fail or success data
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