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Recall: So far we have focused on unconditional generation.

Problem: Sample from Pdata,

Train: Use e.g., the conditional flow matching objective:

Lcrm(0) = Eglluf (z) — uf™8 (z]2)|)

0 = z ~ Pdata, t ~ Unif[0,1), z ~ p(x|z)
Sample: Simulate the corresponding ODE (or SDE):
dX; = Ug (Xt)dt, X0 ~ Dinit

But what about conditional generation?



Today’s Agenda:

1. Extend our generative modeling framework from unconditional
generation to conditional generation

2. Develop classifier-free guidance for conditional sampling

3. Discuss architectural choices for the prototypical case of
image generation and survey current models.

4. Guest talk by Carles Domingo-Enrich!



Part 1:
Conditional Generation and Guidance



Image source: Scaling Rectified
Flow Transformers for
High-Resolution Image Synthesis
(1]
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A swamp ogre with a pearl A car made out of vegetables. heat death of the universe,
earring by Johannes Vermeer line art

Unconditional: “Generate an image.”

Conditional: “Generate an image of a cat baking a cake.”



/

A swamp ogre with a pearl A car made out of vegetables. heat death of the universe,
earring by Johannes Vermeer line art

Uneonditionat Unguided: “Generate an image.”

Image source: Scaling Rectified
Flow Transformers for
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Conditionat Guided: “Generate an image of a cat baking a cake.”



Guided Generation: What Changes?
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A Guided CFM Objective

Observation: For fixed y, we obtain the unguided problem, and may adapt an
unguided objective to obtain:

ided F
L& (0;y) = Eolluf (zly) — w5 (z]2)|)?

= 2 ~ Pdata(2|y), t ~ Unif{0, 1), z ~ ps(x|z)
Observation: By varying y, the above yields a guided objective for general y:
ided target
L& (0) = Enllug (zly) — u™™ " (z[2)|)?
= (2,9) ~ pdata(2,¥y), t ~ Unif]0, 1), = ~ ps(x|2)

We may then train using this objective.



Guided Sampling

Algorithm 7 Guided Sampling Procedure

Require: A trained guided vector field uf(z|y).
1: Select a prompt y € )V, such as “a cat baking a cake”.
2: Initialize Xy ~ pipit.
3: Simulate dX; = uf(X;|y)dt from t = 0 to ¢t = 1.

Can we do better? At least empirically, the answer is yes...



Classifier-Free Guidance

For Gaussian probability paths, it can be shown that

_ dtﬁtz — /Bt/Btat

w8 (zly) = w8 (z) + bV iog pi(ylz),  be

For fixed w we may define

Ol

target

U (zly) =ug - (@) + wbVlog pi(y|z)
Rearranging yields

target target

ut(zly) = (L —w)u, ° (z) +wu; ° (x|y)

This procedure is known as classifier-free guidance.



Classifier-Free Guidance Training

Observation: We may treat the unguided vector field as conditioned on nothing.
But, nothing is something:

u‘;arget (x) _ u’;arget (ZB‘y _ @)

We may now train a single model uf(z|y), y € {V, @} by re-using £5i44(9) and
occasionally setting y = & :

L& (0) = Eolluf (zly) — " (z2)|

0= (2,y) ~ pdata(2,y), with prob. n, y < &, t ~ Unif{0, 1), z ~ p(z|z)
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4: Simulate dX; = [(1 — w)uf(Xﬂ@) + wu?(thy

2: Select a guidance scale w > 1.

1: Select a prompt y € ),
3: Initialize X() ~ Dinit -

Algorithm 8 Classifier-Free Guidance Sampling Procedure

Require: A trained guided vector field uf(z|y).




Image source:
Classifier-free
diffusion guidance [5].

Example: Classifier-Free Guidance




Part 2:
Architectural Considerations for Image
Generation



Architectures for Image Generation
Recall: An image lives in REmasexHxW

Question: An MLP is insufficient in such a high-dimensional space.
What, then, should u¢(z|y) look like?

Preview: We’ll explore two choices: U-Nets (convolution based)
and diffusion transformers (attention based).

Pay Attention: How is y encoded, embedded, and processed?
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Lab Three U-Net

In lab three, we’'ll utilize the
simplified U-Net architecture
shown at right to build a generative
model for the MNIST dataset.

In this case z; € R1X32X32  and

y e {0,1,...,9,0}
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Lab Three U-Net: Encoder Layer
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Lab Three U-Net: Midcoder Layer
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Lab Three U-Net: Decoder Layer
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Lab Three U-Net: Residual Layer
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Image sources: Vision transformer
paper [2] (left), diffusion transformer

paper [3] (right).

Diffusion Transformer (DiT)

Idea: Divide an image into patches and attend between the patches. Based on

the vision transformer (ViT).
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Image source: .High Resolution Image
Synthesis with Latent Diffusion Models [4]

Generative Modeling in Latent Space

Idea: Train the generative model in the latent space of a pre-trained
(variational) autoencoder.
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Image source: Scaling Rectified Flow
Transformers for High-Resolution Image

Case Study: Stable Diffusion 3 synthesis ]

Ideas: Uses pre-trained autoencoder. Conditions on CLIP (coarse-grained) and
T5-XXL (sequence-level) text embeddings via cross-attention. Extends DiT from
class-conditioning to text-conditioning,.
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directly is intractable due to the marginalization in Equa-
tion 6, Conditional Flow Matching (see B.1),
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Next class:
Thursday (Jan 30), 11am-12:30pm
Robotics and Protein Design!

E25-111 (same room)

Office hours: Tuesday (37-212) & Wednesday (E25-111), 11am-12:30pm
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Part 3:
Guest Talk!



