Lecture 4

Conditional Image Generation

MIT IAP 2025 | Jan 27, 2025

Peter Holderrieth and Ezra Erives

Sponsor: Tommi Jaakkola

Recall: So far we have focused on **unconditional** generation.

Problem: Sample from $\,p_{
m data}$

Train: Use e.g., the conditional flow matching objective:

$$\begin{aligned} \mathcal{L}_{\text{CFM}}(\theta) &= \mathbb{E}_{\Box} \| u_t^{\theta}(x) - u_t^{\text{target}}(x|z) \|^2 \\ & \Box = z \sim p_{\text{data}}, \, t \sim \text{Unif}[0, 1), \, x \sim p_t(x|z) \end{aligned}$$

Sample: Simulate the corresponding ODE (or SDE):

$$\mathrm{d}X_t = u_t^{\theta}(X_t)\mathrm{d}t, \qquad X_0 \sim p_{\mathrm{init}}$$

But what about **conditional generation?**

Today's Agenda:

- 1. Extend our generative modeling framework from **unconditional** generation to conditional generation
- 2. Develop **classifier-free guidance** for conditional sampling
- 3. Discuss **architectural choices** for the prototypical case of **image generation** and **survey current models.**
- 4. Guest talk by Carles Domingo-Enrich!

Part 1: Conditional Generation and Guidance

A swamp ogre with a pearl earring by Johannes Vermeer

A car made out of vegetables.

line art

Image source: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [1]

Unconditional: "Generate an image."

Conditional: "Generate an image of a cat baking a cake."

A swamp ogre with a pearl earring by Johannes Vermeer

A car made out of vegetables.

line art

Image source: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [1]

Unconditional Unguided: "Generate an image."

Conditional Guided: "Generate an image of a cat baking a cake."

Guided Generation: What Changes?

Unguided		Guided	
Marginal probability path	$p_t(x)$	Guided marginal probability path	$p_t(x y)$
Marginal vector field $oldsymbol{u}$	$_t^{\mathrm{target}}(x)$	Guided marginal vector field	$u_t^{ ext{target}}(x y)$
Marginal $ abla$ score	$\log p_t(x)$	Guided marginal score	$\nabla \log p_t(x y)$
Model	$u_t^{\theta}(x)$	Guided model	$u_t^{ heta}(x y)$
CFM Objective	$\mathcal{L}_{ ext{CFM}}(heta)$	Guided CFM Objective	???

A Guided CFM Objective

Observation: For **fixed y**, we obtain the **unguided problem**, and may adapt an **unguided objective** to obtain:

$$\mathcal{L}_{\mathrm{CFM}}^{\mathrm{guided}}(\theta; y) = \mathbb{E}_{\Box} \| u_t^{\theta}(x|y) - u_t^{\mathrm{target}}(x|z) \|^2$$
$$\Box = z \sim p_{\mathrm{data}}(z|y), \ t \sim \mathrm{Unif}[0, 1), \ x \sim p_t(x|z)$$

Observation: By **varying y**, the above yields a **guided objective** for **general y**:

$$\mathcal{L}_{\mathrm{CFM}}^{\mathrm{guided}}(\theta) = \mathbb{E}_{\Box} \| u_t^{\theta}(x|y) - u_t^{\mathrm{target}}(x|z) \|^2$$
$$\Box = (z, y) \sim p_{\mathrm{data}}(z, y), \ t \sim \mathrm{Unif}[0, 1), \ x \sim p_t(x|z)$$

We may then **train** using this objective.

Algorithm 7 Guided Sampling Procedure

Require: A trained guided vector field $u_t^{\theta}(x|y)$.

- 1: Select a prompt $y \in \mathcal{Y}$, such as "a cat baking a cake".
- 2: Initialize $X_0 \sim p_{\text{init}}$.
- 3: Simulate $dX_t = u_t^{\theta}(X_t|y)dt$ from t = 0 to t = 1.

Can we do better? At least empirically, the answer is yes...

Classifier-Free Guidance

For Gaussian probability paths, it can be shown that

$$u_t^{\text{target}}(x|y) = u_t^{\text{target}}(x) + b_t \nabla \log p_t(y|x), \qquad b_t = \frac{\dot{lpha}_t eta_t^2 - \dot{eta}_t eta_t lpha_t}{lpha_t}$$

For fixed w we may define

$$\tilde{u}_t(x|y) = u_t^{\text{target}}(x) + wb_t \nabla \log p_t(y|x)$$

Rearranging yields

$$\tilde{u}_t(x|y) = (1-w)u_t^{\text{target}}(x) + wu_t^{\text{target}}(x|y)$$

This procedure is known as **classifier-free guidance**.

Classifier-Free Guidance Training

Observation: We may treat the unguided vector field as **conditioned on nothing.** But, **nothing is something:**

$$u_t^{\text{target}}(x) = u_t^{\text{target}}(x|y = \emptyset)$$

We may now train a single model $u_t^{\theta}(x|y), y \in \{\mathcal{Y}, \emptyset\}$ by re-using $\mathcal{L}_{CFM}^{guided}(\theta)$ and occasionally setting $y = \emptyset$:

$$\mathcal{L}_{\mathrm{CFM}}^{\mathrm{CFG}}(\theta) = \mathbb{E}_{\Box} \| u_t^{\theta}(x|y) - u_t^{\mathrm{target}}(x|z) \|^2$$
$$\Box = (z, y) \sim p_{\mathrm{data}}(z, y), \text{ with prob. } \eta, y \leftarrow \emptyset, t \sim \mathrm{Unif}[0, 1), x \sim p_t(x|z)$$

Algorithm 8 Classifier-Free Guidance Sampling Procedure

Require: A trained guided vector field $u_t^{\theta}(x|y)$.

- 1: Select a prompt $y \in \mathcal{Y}$, or take $y = \emptyset$ for unguided sampling.
- 2: Select a guidance scale w > 1.
- 3: Initialize $X_0 \sim p_{\text{init}}$.
- 4: Simulate $dX_t = \left[(1 w) u_t^{\theta}(X_t | \emptyset) + w u_t^{\theta}(X_t | y) \right] dt$ from t = 0 to t = 1.

Image source: Classifier-free diffusion guidance [5].

Example: Classifier-Free Guidance

w=1.0

w=4.0

Part 2: Architectural Considerations for Image Generation

Architectures for Image Generation

Recall: An image lives in $\mathbb{R}^{C_{\text{image}} \times H \times W}$

Question: An MLP is insufficient in such a high-dimensional space. What, then, should $u_t^{\theta}(x|y)$ look like?

Preview: We'll explore two choices: **U-Nets** (convolution based) and **diffusion transformers** (attention based).

Pay Attention: How is y **encoded**, **embedded**, and **processed**?

Architectures for Image Generation

Recall: An image lives in $\mathbb{R}^{C_{\text{image}} \times H \times W}$

Question: An MLP is insufficient in such a high-dimensional space. What, then, should $u_t^{\theta}(x|y)$ look like?

Preview: We'll explore two choices: **U-Nets** (convolution based) and **diffusion transformers** (attention based).

Pay Attention: How is y **encoded**, **embedded**, and **processed**?

Lab Three U-Net

In lab three, we'll utilize the simplified **U-Net architecture** shown at right to build a generative model for the **MNIST dataset**.

In this case $x_t \in \mathbb{R}^{1 \times 32 \times 32}$ and $y \in \{0, 1, \dots, 9, \varnothing\}$

Lab Three U-Net: Encoder Layer

Lab Three U-Net: Midcoder Layer

Lab Three U-Net: Decoder Layer

Lab Three U-Net: Residual Layer

Image sources: Vision transformer paper [2] (left), diffusion transformer paper [3] (right).

Diffusion Transformer (DiT)

Idea: Divide an image into **patches** and **attend** between the patches. Based on the **vision transformer** (ViT).

Latent Diffusion Transformer

DiT Block with adaLN-Zero

Generative Modeling in Latent Space

Idea: Train the generative model in the **latent space** of a pre-trained (variational) autoencoder.

Image source: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [1]

Case Study: Stable Diffusion 3

Ideas: Uses **pre-trained autoencoder**. Conditions on **CLIP** (coarse-grained) and **T5-XXL** (sequence-level) text embeddings via cross-attention. Extends DiT from class-conditioning to text-conditioning.

directly is intractable due to the marginalization in Equation 6, *Conditional Flow Matching* (see B.1),

$$\mathcal{L}_{CFM} = \mathbb{E}_{t, p_t(z|\epsilon), p(\epsilon)} || v_{\Theta}(z, t) - u_t(z|\epsilon) ||_2^2 , \quad (8)$$

with the conditional vector fields $u_t(z|\epsilon)$ provides an equivalent yet tractable objective.

```
Training objective used [1].
```


Next class:

Thursday (Jan 30), 11am-12:30pm Robotics and Protein Design!

E25-111 (same room)

Office hours: Tuesday (37-212) & Wednesday (E25-111), 11am-12:30pm

References

- 1. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis, <u>https://arxiv.org/abs/2403.03206</u>
- 2. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, <u>https://arxiv.org/abs/2010.11929</u>
- 3. Scalable Diffusion Models with Transformers,

https://arxiv.org/abs/2212.09748

- 4. High Resolution Image Synthesis with Latent Diffusion Models, <u>https://arxiv.org/abs/2112.10752</u>
- 5. Classifier-Free Diffusion Guidance, <u>https://arxiv.org/abs/2207.12598</u>

Part 3: Guest Talk!