Lecture 3

Training Flow and Diffusion Models

MIT IAP 2025 | Jan 23, 2025

Peter Holderrieth and Ezra Erives

Sponsor: Tommi Jaakkola

Reminder: Flow and Diffusion Models

To get samples, simulate ODE/SDE from t=0 to t=1 and return $\,X_1$

Conditional Prob. Path, Vector Field, and Score

Marginal Prob. Path, Vector Field, and Score

	Notation	Key property	Formula
Marginal Probability Path	p_t	Interpolates $p_{ m in}$ and $p_{ m data}$	it $\int p_t(x z) p_{\text{data}}(z) \mathrm{d}z$
Marginal Vector Field	$u_t^{ ext{target}}(x)$	ODE follows marginal path	$\int u_t^{\text{target}}(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} \mathrm{d}z$
Marginal Score Function	$\nabla \log p_t(x)$	Can be used to convert ODE target to SDE	$\int \nabla \log p_t(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} dz$

Yesterday: Training target

Today: Training algorithm

Marginal Vector Field

Flow Matching

Marginal Score Function

Score Matching

Reminder - Marginal vector field:

$$u_t^{\text{target}}(x) = \int u_t^{\text{target}}(x|z) \frac{p_t(x|z)p_{\text{data}}(z)}{p_t(x)} dz$$

Conditional vector field

Marginalization trick: The marginal vector field defines an ODE that

"follows" the marginal probability path:

$$X_0 \sim p_{\text{init}}, \quad \frac{\mathrm{d}}{\mathrm{d}t} X_t = u_t^{\text{target}}(X_t) \mathrm{d}t \quad \Rightarrow X_t \sim p_t$$

This means that the final point fulfils:

$$X_1 \sim p_{\text{data}}$$

Algorithm 3 Flow Matching Training Procedure (General)

Require: A dataset of samples $z \sim p_{data}$, neural network u_t^{θ}

- 1: for each mini-batch of data do
- 2: Sample a data example z from the dataset.
- 3: Sample a random time $t \sim \text{Unif}_{[0,1]}$.
- 4: Sample $x \sim p_t(\cdot|z)$
- 5: Compute loss

$$\mathcal{L}(\theta) = \|u_t^{\theta}(x) - u_t^{\text{target}}(x|z)\|^2$$

6: Update the model parameters θ via gradient descent on $\mathcal{L}(\theta)$ 7: end for

Figure credit: Yaron Lipman Algorithm 4 Flow Matching Training for CondOT path

Require: A dataset of samples $z \sim p_{data}$, neural network u_t^{θ}

- 1: for each mini-batch of data ${\bf do}$
- 2: Sample a data example z from the dataset.
- 3: Sample a random time $t \sim \text{Unif}_{[0,1]}$.
- 4: Sample noise $\epsilon \sim \mathcal{N}(0, I_d)$
- 5: Set $x = tz + (1-t)\epsilon$
- 6: Compute loss

$$\mathcal{L}(\theta) = \|u_t^{\theta}(x) - (z - \epsilon)\|^2$$

7: Update the model parameters θ via gradient descent on $\mathcal{L}(\theta)$. 8: end for

Example Flow Matching - Meta MovieGen

The neural network that generates these videos was trained with the algorithm in the previous slide

Example Flow Matching - Stable Diffusion 3

The neural network that generates these images was trained with the algorithm just shown

Reminder: Sampling Algorithm for Flow Model

Algorithm 1 Sampling from a Flow Model with Euler method

- **Require:** Neural network vector field u_t^{θ} , number of steps n
 - 1: Set t = 0
 - 2: Set step size $h = \frac{1}{n}$
 - 3: Draw a sample $X_0 \sim p_{\text{init}}$ Random initialization!
 - 4: for i = 1, ..., n 1 do
 - 5: $X_{t+h} = X_t + hu_t^{\theta}(X_t)$
 - 6: Update $t \leftarrow t + h$
 - 7: end for

8: return X_1 Return final point

Reminder - Marginal score function:

$$\nabla \log p_t(x) = \int \nabla \log p_t(x|z) \frac{p_t(x|z)p_{\text{data}}(z)}{p_t(x)} dz$$

Conditional score function

SDE extension trick: The marginal score function allows to extend the ODE to a SDE with arbitrary diffusion coefficient:

$$\begin{aligned} X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t &= \left[u_t^{\text{target}}(X_t) + \frac{\sigma_t^2}{2} \nabla \log p_t(X_t) \right] \mathrm{d}t + \sigma_t \mathrm{d}W_t \\ &\Rightarrow X_t \sim p_t \end{aligned}$$

Algorithm 6 Score Matching Training Procedure (General)

Require: A dataset of samples $z \sim p_{data}$, score network s_t^{θ}

- 1: for each mini-batch of data do
- 2: Sample a data example z from the dataset.
- 3: Sample a random time $t \sim \text{Unif}_{[0,1]}$.
- 4: Sample $x \sim p_t(\cdot|z)$
- 5: Compute loss

$$\mathcal{L}(\theta) = \|s_t^{\theta}(x) - \nabla \log p_t(x|z)\|^2$$

6: Update the model parameters θ via gradient descent on $\mathcal{L}(\theta)$ 7: end for

Denoising Score Matching for Gaussian Prob. Path

$$abla \log p_t(x|z) = -rac{x - lpha_t z}{eta_t^2}$$

$$\epsilon \sim \mathcal{N}(0, I_d) \quad \Rightarrow \quad x = \alpha_t z + \beta_t \epsilon \sim \mathcal{N}(\alpha_t z, \beta_t^2 I_d)$$

$$\mathcal{L}_{\mathrm{dsm}}(\theta) = \mathbb{E}_{t \sim \mathrm{Unif}, z \sim p_{\mathrm{data}}, x \sim p_t(\cdot|z)} [\|s_t^{\theta}(x) + \frac{x - \alpha_t z}{\beta_t^2}\|^2]$$
$$= \mathbb{E}_{t \sim \mathrm{Unif}, z \sim p_{\mathrm{data}}, \epsilon \sim \mathcal{N}(0, I_d)} [\|s_t^{\theta}(\alpha_t z + \beta_t \epsilon) + \frac{\epsilon}{\beta_t}\|^2]$$

Algorithm 5 Score Matching Training Procedure for Gaussian probability path

Require: A dataset of samples $z \sim p_{data}$, score network s_t^{θ} or noise predictor ϵ_t^{θ} **Require:** Schedulers α_t, β_t with $\alpha_0 = \beta_1 = 0, \alpha_1 = \beta_0 = 1$

- 1: for each mini-batch of data do
- Sample a data example z from the dataset. 2:
- Sample a random time $t \sim \text{Unif}_{[0,1]}$. 3:
- Sample noise $\epsilon \sim \mathcal{N}(0, I_d)$ 4:
- Set $x_t = \alpha_t z + \beta_t \epsilon$ 5:
- Compute loss 6:

7:

8: end for

 $\mathcal{L}(\theta) = \|s_t^{\theta}(x_t) + \frac{\epsilon}{\beta_t}\|^2$ Numerically unstable for Update the model parameters θ via gradient descent on $\mathcal{L}(\theta)$. low beta

Stochastic sampling with diffusion models

$$\begin{split} X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t &= \left[u_t^{\text{target}}(X_t) + \frac{\sigma_t^2}{2} \nabla \log p_t(X_t) \right] \mathrm{d}t + \sigma_t \mathrm{d}W_t \\ & \left| \begin{array}{c} P \text{lugin neural} \\ \text{networks} \end{array} \right| \quad \Rightarrow X_t \sim p_t \\ X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t &= \left[u_t^{\theta}(X_t) + \frac{\sigma_t^2}{2} s_t^{\theta}(X_t) \right] \mathrm{d}t + \sigma_t \mathrm{d}W_t \end{split}$$

After training $\Rightarrow X_t \sim p_t$

Stochastic Sampling with Diffusion Models

Sampling a protein structure with stochastic sampling using the score function

Denoising diffusion models

= Diffusion models with a Gaussian probability path (our standard example) $\mathcal{N}(\alpha_t z, \beta_t^2 I_d)$

Terminology (by many people)

Denoising diffusion model = diffusion model

i.e. many people drop the word "denoising" and just say "diffusion model".

Special property about DDMs: Score for free!

$$u_t^{\text{target}}(x|z) = \left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t}\alpha_t\right)z + \frac{\dot{\beta}_t}{\beta_t}x \quad \nabla \log p_t(x|z) = -\frac{x - \alpha_t z}{\beta_t^2}$$

Both are weighted averages of x and $z \rightarrow We$ can convert them each other!

$$\begin{split} u_t^{\text{target}}(x|z) &= \left(\beta_t^2 \frac{\dot{\alpha}_t}{\alpha_t} - \dot{\beta}_t \beta_t\right) \nabla \log p_t(x|z) + \frac{\dot{\alpha}_t}{\alpha_t} x \\ u_t^{\text{target}}(x) &= \left(\beta_t^2 \frac{\dot{\alpha}_t}{\alpha_t} - \dot{\beta}_t \beta_t\right) \nabla \log p_t(x) + \frac{\dot{\alpha}_t}{\alpha_t} x \end{split}$$

You can show this by plugging in the equation and do some algebra

Conversion formula for DDMs

One can also convert the score network into vector field network post training:

$$u_t^{\theta} = \left(\beta_t^2 \frac{\dot{\alpha}_t}{\alpha_t} - \dot{\beta}_t \beta_t\right) s_t^{\theta}(x) + \frac{\dot{\alpha}_t}{\alpha_t} x$$

In denoising diffusion models, we don't have to train the vector field and score network separately

 \rightarrow they can be converted into one another post-training

The first generation of diffusion models only did score matching!

We arrived at a full end-to-end training and sampling algorithm! We have a generative model!

Next steps:

- Neural networking architectures
- Conditioning on a prompt
- Image generators
- Other applications:
 - 1. Robotics
 - 2. Protein design

Brief literature overview (see lecture notes for details)

- There is a whole zoo of different flow and diffusion model (Don't be confused!)
- First diffusion models: **Discrete time** (no ODE/SDEs)
- First SDE-based model: Forward-backward process using time-reversal of SDEs → construction of a probability path
- **Inverted time convention**: Data distribution at t=0

Here: Flow matching and stochastic interpolants:

- Arguably most simple flow and diffusion algorithms
- Allows you to restrict yourself to flows
- Allows you go from arbitrary $\,p_{
 m init}\,$ to arbitrary $\,p_{
 m data}\,$

Note: Our method allows to convert arbitrary distributions into arbitrary distributions!

Bridging arbitrary distributions - Example

Videos without audio \rightarrow videos with audio

Low resolution images \rightarrow high resolution images

Unperturbed cells \rightarrow perturbed cells

etc.

Figure credit: Michael Albergo

Next class:

Monday (Jan 27), 11am-12:30pm Building an image generator!

E25-111 (same room)

Office hours: Tomorrow (Friday), 11am-12:30pm in 37-212