Lecture 2

Constructing a Training Target for Flow and Diffusion Models

MIT IAP 2025 | Jan 22, 2025

Peter Holderrieth and Ezra Erives

Sponsor: Tommi Jaakkola

Reminder: Flow and Diffusion Models

To get samples, simulate ODE/SDE from t=0 to t=1 and return $\,X_1$

Next step: Training the model

Without training, the model produces "non-sense" \rightarrow We need to train $u_t^{ heta}$

Training = Finding parameters θ such that

$$X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t = u_t^{\theta}(X_t)\mathrm{d}t \quad \text{Implies} \quad X_1 \sim p_{\mathrm{data}}$$

Start with initial distribution

Follow along the vector field

The distribution of the final point = data distribution

Goal of lecture 2 (today) and lecture 3 (tomorrow):

Derive training algorithm

Today's goal: Derive a Training Target

- Typically, we train the model by minimizing a mean squared error:

$$L(\theta) = \|u_t^{\theta}(x) - u_t^{\text{target}}(x)\|^2$$
Training target

- In regression or classification, the training target is the label.
- Here: No label :(\rightarrow We have to derive a training target

Today: Derive a formula for the training target: $u_t^{target}(x)$ Tomorrow: Training algorithm using $u_t^{target}(x)$

Today: Training target

Tomorrow: Training algorithm

Marginal Vector Field

Marginal Score Function

Flow Matching

Score Matching

Section 2:

Constructing a Training Target

Goal: Derive a formula for a training target for training our models

Today will be the **technically most challenging lecture**!

The next lectures will **be much much easier**!

Key terminology: "Conditional" = "Per single data point" "Marginal" = "Across distribution of data points"

Probability Paths: The Path from Noise to Data

t=0

t=1

Conditional Prob. Path

Conditional Vector Field

Conditional Score Function

Marginal Prob. Path

	Notation	Key property	Formula
Marginal Probability Path	p_t	Interpolates $p_{ m init}$ and $p_{ m data}$	$\int p_t(x z) p_{\text{data}}(z) \mathrm{d}z$
Marginal Vector Field			
Marginal Score Function			

Simulating ODE with Conditional Vector Field for Conditional Probability Path

NOTE: This is an animated gif and is static in a PDF

Ground truth

 $p_t(\cdot|z)$

ODE samples

ODE Trajectories

Continuity Equation

Randomly initialized ODE

Given:
$$X_0 \sim p_{ ext{init}}, \quad rac{\mathrm{d}}{\mathrm{d}t} X_t = u_t(X_t)$$

Follow probability path:

$$X_t \sim p_t \quad (0 \leq t \leq 1)$$

 P_t

PDE holds

equivalent

Continuity equation holds

 $\frac{\mathrm{d}}{\mathrm{d}t}p_t(x) = -\mathrm{div}(p_t u_t)(x)$

Continuity Equation

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(x) = -\mathrm{div}(p_t u_t)(x)$$

Change of probability mass at x Outflow - inflow of probability mass from u

Gaussian Conditional Probability Path And Conditional Vector Field

Toy example

NOTE: This is an animated gif and is static in a PDF

Simulating ODE with Marginal Vector Field for Gaussian Probability Path

Conditional Prob. Path, Vector Field, and Score

Conditional Score Function

Marginal Prob. Path, Vector Field, and Score

	Notation	Key property	Formula
Marginal Probability Path	p_t	Interpolates $p_{ m init}$ and $p_{ m data}$	$\int p_t(x z) p_{ m data}(z) { m d}z$
Marginal Vector Field	$u_t^{ ext{target}}(x)$	ODE follows $\int dx$	$u_t^{ ext{target}}(x z)rac{p_t(x z)p_{ ext{data}}(z)}{p_t(x)} ext{d}z$
Marginal			

1

Score

Function

Outlook (Next class) - Flow Matching Loss

The Flow Matching loss is a mean squared error between the neural network and the marginal vector field:

$$L_{\rm fm}(\theta) = \mathbb{E}_{t \sim {\rm Unif}, x \sim p_t} [\|u_t^{\theta}(x) - u_t^{\rm target}(x)\|^2]$$

Training a Flow Model Consists of Learning the Marginal Vector Field (How? Next lecture!)

Example marginal vector field - Meta MovieGen

These videos are generated by simulating the ODE with the (learnt) marginal vector field

Ground truth

 $p_t(\cdot|z)$

SDE samples

SDE Trajectories

Fokker-Planck equation Randomly initialized SDE

Given:
$$X_0 \sim p_{\text{init}}, \quad \mathrm{d}X_t = u_t(X_t)\mathrm{d}t + \sigma_t\mathrm{d}W_t$$

Continuity Equation

$$\frac{\mathrm{d}}{\mathrm{d}t}p_t(x) = -\mathrm{div}(p_t u_t)(x)$$

Change of probability mass at x Outflow - inflow of probability mass from u

Outlook (Next class) - Score Matching Loss

The Score Matching loss is a mean squared error between the neural network and the marginal score function:

$$L_{\rm sm}(\theta) = \mathbb{E}_{z \sim p_{\rm data}, x \sim p_t(\cdot|z)} [\|s_t^{\theta}(x) - \nabla \log p_t(x)\|^2]$$

To train a diffusion model, we need to train the score network by minimizing the score matching loss (How? Next class!)

Marginal VF

Marginal VF + Score

Training a Diffusion Model = Learning the Score Function

Conversion of of noise into protein structure by marginal vector field

Slide credit: Jason Yim

NOTE: This is an animated gif and is static in a PDF

Conditional Prob. Path, Vector Field, and Score

Marginal Prob. Path, Vector Field, and Score

	Notation	Key property	Formula
Marginal Probability Path	p_t	Interpolates $p_{ m in}$ and $p_{ m data}$	it $\int p_t(x z) p_{\text{data}}(z) \mathrm{d}z$
Marginal Vector Field	$u_t^{ ext{target}}(x)$	ODE follows marginal path	$\int u_t^{\text{target}}(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} \mathrm{d}z$
Marginal Score Function	$\nabla \log p_t(x)$	Can be used to convert ODE target to SDE	$\int \nabla \log p_t(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} \mathrm{d}z$

Today was the **technically most challenging lecture**!

The next lectures will **be much much easier**!

These 6 formulas is all we need for training!

Next class:

Thursday (Tomorrow), 11am-12:30pm Training algorithm!

E25-111 (same room)

Office hours: Today, 3pm-4:30pm in 37-212