MIT Class 6.5184: Generative AI With Stochastic Differential Equations, 2026

An Introduction to Flow Matching and Diffusion Models
Peter Holderrieth and Ezra Erives

Website: https://diffusion.csail.mit.edu/

Introduction
1.1 Overview o o e e e
1.2 Course STructure o v e e e e e e e
1.3 Generative Modeling As Sampling

Flow and Diffusion Models
2.1 Flow Models e
2.2 Diffusion Models

Flow Matching e
3.1 Conditional and Marginal Probability Path
3.2 Conditional and Marginal Vector Fields
3.3 Learning the Marginal Vector Field

Score Functions and Score Matching o o L.
4.1 Conditional and Marginal Score Functions
4.2 Sampling with SDEs e
4.3 Score Matching L

Guidance: How To Conditionona Prompt
5.1 Vanilla Guidance e
5.2 Classifer-Free Guidance e

Building Large-Scale Image or Video Generators
6.1 Neural Network Architectures e
6.2 Working in Latent Space: (Variational) Autoencoders
6.3 Case Study: Stable Diffusion 3 and Meta Movie Gen

Discrete Diffusion Models: Building Language Models with Diffusion
7.1 Continuous-Time Markov chain (CTMC) models
7.2 Learning CTMGs o o

References e

A Reminder on Probability Theory
Al Random vectors e e
A.2 Conditional densities and expectations L oo

NN e e Ww W

https://diffusion.csail.mit.edu/

B

A Proof of the Fokker-Planck equation

1 Introduction

Creating noise from data is easy; creating data

from noise is generative modeling.

Song et al. [29]

1.1 Overview

In recent years, we all have witnessed a tremendous revolution in artificial intelligence (AI). Image generators like
Nano Banana or Stable Diffusion 8 can generate photorealistic and artistic images across a diverse range of styles,
video models like Meta’s VEO-3 can generate highly realistic movie clips, and large language models like ChatGPT
can generate seemingly human-level responses to text prompts. At the heart of this revolution lies a new ability
of AI systems: the ability to generate objects. While previous generations of Al systems were mainly used for
prediction, these new Al system are creative: they dream or come up with new objects based on user-specified
input. Such generative Al systems are at the core of this recent Al revolution.

The goal of this class is to teach you two of the most widely used generative Al algorithms: denoising diffusion
models [31] and flow matching [15, 17, 1, 16]. These models are the backbone of the best image, audio, and
video generation models (e.g., Nano Banana, FLUX, or VEO-3), and have most recently became the state-of-the-
art in scientific applications such as protein structures (e.g., AlphaFold3 is a diffusion model). Without a doubt,
understanding these models is truly an extremely useful skill to have.

All of these generative models generate objects by iteratively converting noise into data. This evolution from
noise to data is facilitated by the simulation of ordinary or stochastic differential equations (ODEs/SDEs). Flow
matching and denoising diffusion models are a family of techniques that allow us to construct, train, and simulate,
such ODEs/SDEs at large scale with deep neural networks. While these models are rather simple to implement,
the technical nature of SDEs can make these models difficult to understand. In this course, our goal is to provide a
self-contained introduction to the necessary mathematical toolbox regarding differential equations to enable you to
systematically understand these models. Beyond being widely applicable, we believe that the theory behind flow
and diffusion models is elegant in its own right. Therefore, most importantly, we hope that this course will be a

lot of fun to you.

Remark 1 (Additional Resources)

While these lecture notes are self-contained, there are two additional resources that we encourage you to use:
1. Lecture recordings: These guide you through each section in a lecture format.

2. Labs: These guide you in implementing your own diffusion model from scratch. We highly recommend
that you “get your hands dirty” and code.

You can find these on our course website: https://diffusion.csail.mit.edu//.

https://diffusion.csail.mit.edu/

1.2 Course Structure

1.2 Course Structure

We give a brief overview over of this document. Sections 1-6 represent the core “canonical” ingredients for diffusion

models, while sections 7 and 8 are advanced topics and optional.

e Section 1, Generative Modeling as Sampling: We formalize what it means to “generate” an image, video,
protein, etc. We will translate the problem of e.g., “how to generate an image of a dog?” into the more precise

problem of sampling from a probability distribution.

e Section 2, Flow and Diffusion Models: We explain the machinery of generation. As you can guess by the
name of this class, this machinery consists of simulating ordinary and stochastic differential equations. We

provide an introduction to differential equations and explain how to use them to construct generative models.

e Section 3, Flow Matching: Next, we explain and derive flow matching, a simple and scalable algorithm lying
at the core of all afore-mentioned large-scale generative models such as Stable Diffusion, Nano Banana, or
SORA.

e Section 4, Score Matching: We study score functions and how they can be learnt via score matching. Not

only is this the training algorithm for diffusion models, but it unlocks SDE sampling and guidance.

e Section 5, Guidance: We learn how to condition our samples on a prompt (e.g. “an image of a cat”) and

how we can enforce adherence to such a prompt.

e Section 6, Large-Scale Image and Video Generators: We discuss how one builds large-scale image and
video generators such as Nano Banana. This includes common neural network architectures and how to build

things in latent space. We also survey state-of-the-art models.

e Section ?? (Optional), Distillation: We learn how to accelerate diffusion models. Increasing the speed of

these models is of interest for real-time interactive applications such as world models (e.g. Genie 3).

e Section 7 (Optional), Discrete Diffusion Models: We learn how to translate the principles of diffusion
models from Euclidean space to discrete data such as language. This enables the construction of large

language models using the principles of diffusion models.

Required background. Due to the technical nature of this subject, we recommend some base level of mathematical
maturity, and in particular some familiarity with probability theory. For this reason, we included a brief reminder

section on probability theory in Section A. Don’t worry if some of the concepts there are unfamiliar to you.

1.3 Generative Modeling As Sampling

Let’s begin by thinking about various data types, or data modalities, that we might encounter, and how we will

go about representing them numerically:

1. Image: Consider images with H x W pixels where H describes the height and W the width of the image,

each with three color channels (RGB). For every pixel and every color channel, we are given an intensity value

in R. Therefore, an image can be represented by an element z € RH¥*Wx3,

1.3 Generative Modeling As Sampling

2. Video: A video is simply a series of images in time. If we have T' time points or frames, a video would

therefore be represented by an element z € RT*XH>xWx3,

3. Molecular structure: A naive way would be to represent the structure of a molecule by a matrix

z = (z',...,2") € R®*N where N is the number of atoms in the molecule and each z* € R? describes the

location of that atom. Of course, there are other, more sophisticated ways of representing such a molecule.

In all of the above examples, the object that we want to generate can be mathematically represented as a vector

(potentially after flattening). Therefore, throughout this document, we will have:

Key Idea 1 (Objects as Vectors)
We identify the objects being generated as vectors z € R?.

A notable exception to the above is text data, which is typically modeled as a discrete object by language models

(such as ChatGPT). While continuous data z € R? is our main focus, we also study text generation in Section 7.

Generation as Sampling. Let us define what it means to “generate” something. For example, let’s say we want
to generate an image of a dog. Naturally, there are many possible images of dogs that we would be happy with.
In particular, there is no one single “best” image of a dog. Rather, there is a spectrum of images that fit better or
worse. In machine learning, it is common to realize this diversity of possible images as a probability distribution
over the space of images. We call such a distribution a data distribution and denote it as pgat.. Mathematically,
one can think of pgata as a probability density, i.e. a function pgac. : R — R>¢ that assigns each possible object
z € R? a likelihood pgaia(z) > 0. In the example of dog images, this distribution would therefore give higher
likelihood pgata(2) to images z that look more like a dog. Therefore, how "good" an image/video/molecule fits - a
rather subjective statement - is replaced by how "likely" it is under the data distribution pgat,. With this, we can

mathematically express the task of generation as sampling from the (unknown) distribution pgata:

Key Idea 2 (Generation as Sampling)

Generating an object z is modeled as sampling from the data distribution z ~ pqata.

A generative model is a machine learning model that allows us to generate samples from pga¢». In machine learning,
we require data to train models. In generative modeling, we usually assume access to a finite number of examples

sampled independently from pga.ta, which together serve as a proxy for the true distribution.

Key ldea 3 (Dataset)

A dataset consists of a finite number of samples z1,..., 2N ~ Pdata-

For images, we might construct a dataset by compiling publicly available images from the internet. For videos, we
might similarly look to use YouTube. For protein structures, sources like the RCSB Protein Data Bank (PDB)
provide hundreds of thousands of experimentally resolved structures. As the size of our dataset grows very large,

it becomes an increasingly better representation of the underlying distribution pgaa.

1.3 Generative Modeling As Sampling

Guided/Conditional Generation. In many cases, we want to generate an object conditioned on some data y. For
example, we might want to generate an image conditioned on y =“a dog running down a hill covered with snow

with mountains in the background”. We can rephrase this as sampling from a conditional distribution:

Key ldea 4 (Guided Generation)

Guided generation involves sampling from z ~ pqata(-|y), where y is a conditioning variable.

We call pgata(-|y) the guided data distribution. The guided generative modeling task typically involves learning to
condition on an arbitrary, rather than fixed, choice of y. Using our previous example, we might alternatively want
to condition on a different text prompt, such as y =“a photorealistic image of a cat blowing out birthday candles”.
We therefore seek a single model which may be conditioned on any such choice of y. It turns out that techniques
for unconditional generation are readily generalized to the conditional case. Therefore, for the first 3 sections, we
will focus almost exclusively on the unconditional case (keeping in mind that conditional generation is what we’re

building towards).

Generative Models. Abstractly speaking, a generative model is an algorithm that returns samples from 2z ~ pgata
(or at least approximately). If pgata is the distribution of images of dogs, this algorithm would return random
images of dogs. In this course, we will focus on the specific construction of generative models using flow or diffusion
models as these represent the current state-of-the-art. However, it is important to keep in mind that many other

generative models were developed (and maybe even more that will be discovered in the future).
Summary 2 (Generation as Sampling)
We summarize the findings of this section:

1. In this class, we mainly consider the task of generating objects that are represented as vectors z € R¢

such as images, videos, and molecular structures.

2. Generation is the task of generating samples from a probability distribution pga.t. having access to a

dataset of samples 21, ..., 2N ~ Pdata during training.

3. Guided generation assumes that we condition the distribution on a label y and we want to sample from

Pdata(-|y) having access to data set of pairs (z1,¥). .., (2n,y) during training.

4. Our goal is to construct a generative model, i.e. a model that returns samples from pqa¢, after training.

2 Flow and Diffusion Models

In the previous section, we formalized generative modeling as sampling from a data distribution pgat.. Further, we
formalized our goal: To construct a generative model, i.e. an algorithm that returns samples z ~ pgata. In this
section, we describe how a generative model can be built as the simulation of a suitably constructed differential
equation. For example, flow matching and diffusion models involve simulating ordinary differential equations
(ODEs) and stochastic differential equations (SDEs), respectively. The goal of this section is therefore to define
and construct these generative models as they will be used throughout the remainder of the notes. Specifically, we
first define ODEs and SDEs, and discuss their simulation. Second, we describe how to parameterize an ODE/SDE
using a deep neural network. This leads to the definition of a flow and diffusion model and the fundamental

algorithms to sample from such models. In later sections, we then explore how to train these models.

2.1 Flow Models

We start by defining ordinary differential equations (ODEs). A solution to an ODE is defined by a trajectory, i.e.

a function of the form
X:[0,1] =RY te Xy,

that maps from time ¢ to some location in space R%. Every ODE is defined by a vector field u, i.e. a function of

the form
w:REx[0,1] = RY, (2,t) — uy(z),

i.e. for every time ¢ and location = we get a vector u;(z) € R? specifying a velocity in space (see Figure 1). An

ODE imposes a condition on a trajectory: we want a trajectory X that “follows along the lines” of the vector field

uy, starting at the point xg. We may formalize such a trajectory as being the solution to the equation:

d

aXt = ut(Xt) » ODE (la)
Xo =z » initial conditions (1b)

Equation (la) requires that the derivative of X is specified by the direction given by u;. Equation (1b) requires
that we start at xo at time ¢ = 0. We may now ask: if we start at Xy = z¢ at ¢ = 0, where are we at time ¢ (what
is X¢)? This question is answered by a function called the flow, which is a solution to the ODE

PR x [0,1] =»RY, (x0,t) — 1y (x0) (2a)
%wt(xo) = us (Y4 (20)) » flow ODE (2b)
Yo(xo) = xo » flow initial conditions (2¢)

For a given initial condition Xy = zo, a trajectory of the ODE is recovered via X; = ¢;(Xy). Therefore, vector
fields, ODEs, and flows are, intuitively, three descriptions of the same object: vector fields define ODEs whose

solutions are flows. As with every equation, we should ask ourselves about an ODE: Does a solution exist and if

2.1 Flow Models

Figure 1: A flow v : R? — RY (red square grid) is defined by a velocity field u; : R? — R? (visualized with blue
arrows) that prescribes its instantaneous movements at all locations (here, d = 2). We show three different times
t. As one can see, a flow is a diffeomorphism that "warps" space. Figure from [16].

80, is it unique? A fundamental result in mathematics is "yes!" to both, as long we impose weak assumptions on

Ut

Theorem 3 (Flow existence and uniqueness)
If u : RYx[0,1] — R? is continuously differentiable with a bounded derivative, then the ODE in (2) has a unique
solution given by a flow ;. In this case, 1; is a diffeomorphism for all ¢, i.e. v; is continuously differentiable

with a continuously differentiable inverse 1, L

Note that the assumptions required for the existence and uniqueness of a flow are almost always fulfilled in machine
learning, as we use neural networks to parameterize u:(x) and they always have bounded derivatives. Therefore,
Theorem 3 should not be a concern for you but rather good news: flows exist and are unique solutions to ODEs

in our cases of interest. A proof can be found in [22, 3].

Example 4 (Linear Vector Fields)
Let us consider a simple example of a vector field u;(x) that is a simple linear function in z, i.e. us(x) = —0x

for 6 > 0. Then the function
i(zg) = exp (—0t) xg (3)
defines a flow v solving the ODE in Equation (2). You can check this yourself by checking that g (o) = g

and computing

o) L 3 (e (08 20) L ~gexp (~600) 20 L ~694(z0) = wa(W(a0))

where in (i) we used the chain rule. In Figure 3, we visualize a flow of this form converging to 0 exponentially.

Simulating an ODE. In general, it is not possible to compute the flow ; explicitly if u; is not as simple as in the
previous example. In these cases, one uses numerical methods to simulate ODEs. Fortunately, this is a classical

and well researched topic in numerical analysis, and a myriad of powerful methods exist [11]. One of the simplest

2.1 Flow Models

and most intuitive methods is the Euler method. In the Euler method, we initialize with Xg = ¢ and update via
Xt+h :Xt+hut(Xt) (t:(),h, 2h, 3h,,1 *h) (4)

where h = n~! > 0 is the step size and n € N is the number of simulation steps. For this class, the Euler method
will be good enough. To give you a taste of a more complex method, let us consider Heun’s method defined via

the update rule

X =Xo + huy(Xy) » initial guess of new state (same as Euler step)

h
Xion = X¢ + §(ut(Xt) +usyn(Xiyp)) » update with average u at current and guessed state

Intuitively, the Heun’s method is as follows: it takes a first guess X;_ ; of what the next step could be but corrects

the direction initially taken via an updated guess.

Flow models. We can now construct a generative model via an ODE by making the vector field a neural network
vector field uf. For now, we simply mean that u! is a parameterized function u? : R? x [0, 1] — R? with parameters
6. Later, we will discuss particular choices of neural network architectures. Remember that our goal was to generate
samples z ~ Pgata from a distribution pgata- In particular, these samples must be random. Note though that an
ODE itself is not random but fully deterministic. To inject some randomness, we simple make the initial condition
X random. Specifically, we choose an initial distribution p;,;;. In most cases, we set pin;y = N (0, I;) to be a simple
standard Gaussian. Most importantly, whatever distribution you choose, it must be one that we can easily sample
from at inference-time. A flow model is then described by the ODE

Xo ~ Dinit » random initialization
d

&Xt =u!(Xy) » ODE

Our goal is to make the endpoint X; of the trajectory have distribution pqata, i-e.

Xl ~ Pdata, = "/)? (XO) ~ Pdata

where ¢ describes the flow induced by u?. Note however: although it is called flow model, the neural network

parameterizes the vector field, not the flow (at least for now). In order to compute the flow, we need to simulate

the ODE. In Algorithm 1, we summarize the procedure how to sample from a flow model.

Algorithm 1 Sampling from a Flow Model with Euler method

Require: Neural network vector field u{, number of steps n
1: Sett=0
2: Set step size h = %
3: Draw a sample Xg ~ Dinis
4: fort=1,...,n do
5: Xiyn =X + hu?(Xt)
6: Updatet<«+t+h
7: end for
8: return X

2.2 Diffusion Models

2.2 Diffusion Models

Stochastic differential equations (SDEs) extend the deterministic trajectories from ODEs with stochastic trajecto-

ries. A stochastic trajectory is commonly called a stochastic process (X;)o<;<1 and is given by

X; is a random variable for every 0 < ¢ <1

X :[0,1] = RY, t+ X, is a random trajectory for every draw of X

In particular, when we simulate the same stochastic process twice, we might get different outcomes because the

dynamics are designed to be random.

Brownian Motion. SDEs are constructed via a Brownian motion - a fundamental stochastic process that came
out of the study physical diffusion processes. You can think of a Brownian motion as a continuous random walk.

Let us define it: A Brownian motion W = (W;)o<<1 is a stochastic

process such that Wy = 0, the trajectories ¢t — W; are continuous,

and the following two conditions hold:

1. Normal increments: W;,—W, ~ N (0, (t—s)I) forall0 < s < 2
t, i.e. increments have a Gaussian distribution with variance

increasing linearly in time (I is the identity matrix).

2. Independent increments: For any 0 <ty <t; < -+ <t, =) 0
1, the increments Wy, =Wy, ..., W, —W,; _, areindependent
random variables. -1
Brownian motion is also called a Wiener process, which is why -
we denote it with a "W".! We can easily simulate a Brownian
motion approximately with step size h > 0 by setting Wy = 0 and ° ! *ime (03 : ’

updating Figure 2: Sample trajectories of a Brownian

motion Wy in dimension d = 1 simulated using

Wt+h :Wt + \/EEt7 €t ~ N(07 Id) (t = 07 h7 2h7 L) 1- h‘) (5) Equation (5)

In Figure 8, we plot a few example trajectories of a Brownian mo-

tion. Brownian motion is as central to the study of stochastic processes as the Gaussian distribution is to the study
of probability distributions. From finance to statistical physics to epidemiology, the study of Brownian motion has
far reaching applications beyond machine learning. In finance, for example, Brownian motion is used to model the
price of complex financial instruments. Also just as a mathematical construction, Brownian motion is fascinating:
For example, while the paths of a Brownian motion are continuous (so that you could draw it without ever lifting

a pen), they are infinitely long (so that you would never stop drawing).

From ODEs to SDEs. The idea of an SDE is to extend the deterministic dynamics of an ODE by adding stochastic

dynamics driven by a Brownian motion. Because everything is stochastic, we may no longer take the derivative as

1Nobert Wiener was a famous mathematician who taught at MIT. You can still see his portraits hanging at the MIT math department.

10

2.2 Diffusion Models

Trajectories of OU Process with 0= 0.0, 6 = 0.25 Trajectories of OU Process with 0= 0.25, 6 = 0.25 Trajectories of OU Process with 0= 0.5, 6 = 0.25 Trajectories of OU Process with 0=1.0, 6 = 0.25

X

00 25 50 75 100 125 150 175 200 oo 25 50 75 100 125 150 175 200 o0 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Time (t) Time (t) Time (t) Time (t)

Figure 3: Tllustration of Ornstein-Uhlenbeck processes (Equation (8)) in dimension d = 1 for § = 0.25 and various
choices of o (increasing from left to right). For o = 0, we recover a flow (smooth, deterministic trajectories) that

converges to the origin as ¢ — oco. For o > 0 we have random paths which converge towards the Gaussian N (0, g—;)
as t — o0.

in Equation (1a). Hence, we need to find an equivalent formulation of ODEs that does not use derivatives. For

this, let us therefore rewrite trajectories (X;)o<i<1 of an ODE as follows:

d
&Xt = us(X3) B> expression via derivatives
] 1
W 2 (Xpn — X) = w(X,) + Re(R)

h
< Xpon = Xi + hug(Xy) + hRi(h) » expression via infinitesimal updates

where R;(h) describes a negligible function for small &, i.e. such that }ILILI%) Ri(h) =0, and in (¢) we simply use the
definition of derivatives. The derivation above simply restates what we already know: A trajectory (X;)o<i<1 of
an ODE takes, at every timestep, a small step in the direction u;(X;). We may now amend the last equation to
make it stochastic: A trajectory (X¢)o<i<1 of an SDE takes, at every timestep, a small step in the direction wu;(X})

plus some contribution from a Brownian motion:

Xepn = Xe+ hu(Xy) +or (Wepn — W) + hRe(h) (6)
deterministic stochastic error term

where o, > 0 describes the diffusion coefficient and R;(h) describes a stochastic error term such that the standard
deviation E[||R;(h)||?]'/? — 0 goes to zero for h — 0. The above describes a stochastic differential equation

(SDE). It is common to denote it in the following symbolic notation:

dX; = ut(Xt)dt + o dWy » SDE (7&)

Xo = zo » initial condition (7b)

However, always keep in mind that the "dX;"-notation above is a purely informal notation of Equation (6).
Unfortunately, SDEs do not have a flow map ¢, anymore. This is because the value X; is not fully determined by

Xo ~ pinit anymore as the evolution itself is stochastic. Still, in the same way as for ODEs, we have:

11

2.2 Diffusion Models

Theorem 5 (SDE Solution Existence and Uniqueness)
If u: R? x [0,1] — R? is continuously differentiable with a bounded derivative and o is continuous, then the

SDE in (7) has a solution given by the unique stochastic process (X;)o<i<1 satisfying Equation (6).

If this was a stochastic calculus class, we would spend several lectures proving this theorem and constructing SDEs
with full mathematical rigor, i.e. constructing a Brownian motion from first principles and constructing the process
X; via stochastic integration. As we focus on machine learning in this class, we refer to [19] for a more technical
treatment. Finally, note that every ODE is also an SDE - simply with a vanishing diffusion coefficient o; = 0.

Therefore, for the remainder of this class, when we speak about SDEs, we consider ODEs as a special case.

Example 6 (Ornstein-Uhlenbeck Process)

Let us consider a constant diffusion coefficient o = ¢ > 0 and a constant linear drift u;(z) = —60x for 6 > 0,
yielding the SDE

dXt = —HXtdt + O'th. (8)

A solution (X;)o<¢<1 to the above SDE is known as an Ornstein-Uhlenbeck (OU) process. We visualize it
in Figure 3. The vector field —fx pushes the process back to its center 0 (as I always go the inverse direction
of where I am), while the diffusion coeflicient o always adds more noise. This process converges towards a
Gaussian distribution N(0,02/(26)) if we simulate it for ¢ — co. Note that for o = 0, we have a flow with

linear vector field that we have studied in Equation (3).

Simulating an SDE. If you struggle with the abstract definition of an SDE so far, then don’t worry about it. A
more intuitive way of thinking about SDEs is given by answering the question: How might we simulate an SDE?
The simplest such scheme is known as the Euler-Maruyama method, and is essentially to SDEs what the Euler

method is to ODEs. Using the Euler-Maruyama method, we initialize Xy = ¢ and update iteratively via
Xt+h = Xt + hut(Xt) + \/E(Ttﬁt, € N(O7Id) (9)

where h = n~! > 0 is a step size hyperparameter for n € N. In other words, to simulate using the Euler-Maruyama
method, we take a small step in the direction of u;(X;) as well as add a little bit of Gaussian noise scaled by Vhoy.
When simulating SDEs in this class (such as in the accompanying labs), we will usually stick to the Euler-Maruyama
method.

Diffusion Models. We can now construct a generative model via an SDE in the same way as we did for ODEs.
Remember that our goal was to convert a simple distribution pi,;; into a complex distribution pgaa. Like for
ODEs, the simulation of an SDE randomly initialized with X ~ piyi; is a natural choice for this transformation.

To parameterize this SDE, we can simply parameterize its central ingredient - the vector field u; - a neural network

12

2.2 Diffusion Models

Algorithm 2 Sampling from a Diffusion Model (Euler-Maruyama method)

Require: Neural network u?, number of steps n, diffusion coefficient oy
1: Sett=0
Set step size h = +
Draw a sample X ~ pinit
fori=1,....,ndo
Draw a sample € ~ N (0, I4)
Xivn = X + hul (X)) + Ve
Updatet +t+h
end for

return X;

uf. A diffusion model is thus given by

X0 ~ Pinit » random initialization

dX; = ! (X;)dt + o, dW; » SDE

In Algorithm 2, we describe the procedure by which to sample from a diffusion model with the Euler-Maruyama

method. We summarize the results of this section as follows.

Summary 7 (SDE generative model)
Throughout this document, a diffusion model consists of a neural network u¢ with parameters 6 that parame-

terize a vector field and a fixed diffusion coefficient o;:

Neural network: u? : R? x [0,1] — R, (x,t) — uf(x) with parameters 6

Fixed: o : [0,1] — [0,00), t > 0y

To obtain samples from our SDE model (i.e. generate objects), the procedure is as follows:

Initialization: X ~ pinit » Initialize with simple distribution, e.g. a Gaussian
Simulation: dX; = uf (X3)dt + o dW, » Simulate SDE from 0 to 1
Goal: X; ~ pgata » Goal is to make X; have distribution pgata

A diffusion model with o; = 0 is a flow model.

13

3 Flow Matching

In the previous section, we constructed flow and diffusion models as generative models parameterized by a neural
network vector field u/. However, we have not yet discussed how to train them. i.e. how to optimize the parameters
0 such that generative model returns something sensible, e.g. a nice-looking image or exciting video. Next, we
discuss flow matching [15, 1, 17], a algorithm to train »? that is simple, scalable, and represents the current
state-of-the-art.

In this section, we restrict ourselves to flow models, i.e. we have a neural network u{ and obtain samples from

the generative model by simulating the ODE
Xo ~Pinit, dX; = Uf(Xt)dt (Flow model) (10)

and using the endpoints X; fro ¢ = 1 as samples. As we discussed, our goal is that X, is distributed according
to the data distribution pgata, i-e. X1 ~ Ddata- Therefore, the question “how to train” the neural network is really
the following question: How do we optimize 6 such that simulating the flow model in Equation (10) results in

samples from the data distribution X ~ pg.a?

Figure 4: Gradual interpolation from noise to data via a Gaussian conditional probability path for a collection of
images. Note that each image is a data point of dimension d = 32 x 32, so we are plotting individual samples from
the probability path, while in Figure 5 we plot the distribution as a 2d histogram.

3.1 Conditional and Marginal Probability Path

The first step of flow matching is to specify a probability path. Intuitively, a probability path specifies a gradual
interpolation between noise pini, and data pgata (see Figure 4). But why would we want that? Remember that our
desired ODE trajectory fulfills Xy ~ pini¢ for ¢ = 0 and X7 ~ pgata for ¢ = 1. But what about times 0 < t < 1
in between start and end? It turns out that we have some freedom to choose what should happen in between and
this is what is mathematically formalized in a probability path.

In the following, for a data point z € R%, we denote with §, the Dirac delta “distribution”. This is the simplest
distribution that one can imagine: sampling from ¢, always returns z (i.e. it is deterministic). A conditional

(interpolating) probability path is a set of distribution p;(|z) over R? such that:
po(-12) = pinit, p1(-]2) =6, for all z € R (11)

In other words, a conditional probability path gradually converts the initial distribution pj,;; into a single data

point (see e.g. Figure 4). You can think of a probability path as a trajectory in the space of distributions.

14

3.1 Conditional and Marginal Probability Path

Conditional

r=0.00

Marginal

Figure 5: Illustration of a conditional (top) and marginal (bottom) probability path. Here, we plot a Gaussian
probability path with ay = ¢,8; = 1 —t. The conditional probability path interpolates a Gaussian pinis = N (0, I4)
and pgata = 6, for single data point z. The marginal probability path interpolates a Gaussian and a data distribution
Pdata (Here, paata is a toy distribution in dimension d = 2 represented by a chess board pattern.)

Every conditional probability path p;(z|z) induces a marginal probability path p;(z) defined as the distribution
that we obtain by first sampling a data point z ~ pqat, from the data distribution and then sampling from p;(-|z):
2~ Pdata, T~ pie(c]z) =~y » sampling from marginal path (12)

pi(x) = /pt(x\z)pdata(z)dz » density of marginal path (13)

Note that we know how to sample from p; but we don’t know the density values p;(x) as the integral is intractable
(i.e. we can actually compute Equation (12) but not Equation (13)). Check for yourself that because of the
conditions on p;(+|z) in Equation (11), the marginal probability path p; interpolates between pinit and paata:

Po = pPinit and P71 = Pdata- » noise-data interpolation (14)

The - by far - most important example of a probability path is the Gaussian probability path - hence, we strongly

recommend reading the next example thoroughly.

Example 8 (Gaussian Conditional Probability Path)

One particularly popular probability path is the Gaussian probability path. This is the probability path used
by denoising diffusion models. Let oy, 3; be noise schedulers: two continuously differentiable, monotonic
functions with ag = 51 = 0 and a3 = Sy = 1. We then define the conditional probability path

pi(-)2) = N(awz, B21,) » Gaussian conditional path (15)

15

3.2 Conditional and Marginal Vector Fields

which, by the conditions we imposed on «; and g, fulfills
po(-]2) = NM(aoz, B21g) = N(0,1;), and pi(-]2) = Nz, B21) = 6.,

where we have used the fact that a normal distribution with zero variance and mean z is just §,. Therefore,
this choice of py(z|z) fulfills Equation (11) for pi,is = M (0, I4) and is therefore a valid conditional interpolating
path. In Figure 4, we illustrate its application to an image. We can express sampling from the marginal path

Py as:
2 ~Pdatas € ~ Pinit = N(0,14) = == a2+ Bie ~ py » sampling from marginal Gaussian path (16)

Intuitively, the above procedure adds more noise for lower ¢ until time ¢t = 0, at which point there is only noise.

In Figure 5, we plot an example of such an interpolating path.

3.2 Conditional and Marginal Vector Fields

A probability path (p;)o<i<1 specified what distributions X; ~ p, the points X, along a trajectory should have. At
this point, this is just we “wish” to be the case. But how can we find a vector field such that the trajectories X,
follow the probability path? Flow matching explicitly constructs such a vector field - the “marginal vector field” -

which we explain in this section.

For every data point z € R%, let u;**®°*(-|2) denote a conditional vector field. This can be any vector field such
that corresponding ODE yields the conditional probability path p:(-|z), i.e. such that it holds

d arge
— X, = uEN(Xy|z) = X ~pe(]z) (0<t<1). (17)

X0 ~ Dinit, dt

We can often find a conditional vector field u;*"#®"(-|z) analytically by hand (i.e. by just doing some algebra

ourselves). We illustrate this by deriving a conditional vector field w;(x|z) for our running example of a Gaussian
probability path in Example 10.

At first sight, a conditional vector field seems useless because all endpoints of the ODE X; will collapse to
X; = z, i.e. we are just re-generating known data points z. However, the conditional vector field serves as a

building block for a vector field that generates actual samples from pgata:

Theorem 9 (Marginalization trick)
Let u;*"® (z|z) be a conditional vector field (Equation (17)). Then the marginal vector field u{*#*(z) defined

as

u‘;arget(x) _ /uzarget(xz)Wdz’ (18)

follows the marginal probability path, i.e.

d
—X; =ul®(X,) = X,~p (0<t<1). (19)

XO "~ Pinit, dt

16

3.2 Conditional and Marginal Vector Fields

Ground-Truth Conditional Probability Path

Samples from Conditional ODE

Trajectories of Conditional ODE

* z

s t=0.00
t=0.33
t=0.67

« t=1.00

* z

» t=0.00
t=0.33

« t=0.67

« t=1.00

Ground-Truth Marginal Probability Path
: e+ t=0.00

Samples from Learned Marginal ODE

» t=0.00
t=0.33
t=0.67

s t=1.00

Trajectories of Learned Marginal ODE

Figure 6: Illustration of Theorem 9. Simulating a probability path with ODEs. Data distribution pgats in blue
background. Gaussian pin;¢ in red background. Top row: Conditional probability path. Left: Ground truth
samples from conditional path p:(-|z). Middle: ODE samples over time. Right: Trajectories by simulating ODE

target

with w; "% (z]z) in Equation (20). Bottom row: Simulating a marginal probability path. Left: Ground truth
samples from p;. Middle: ODE samples over time. Right: Trajectories by simulating ODE with marginal vector
field uf'°V (). As one can see, the conditional vector field follows the conditional probability path and the marginal

vector field follows the marginal probability path.

n , target

In particular, X; ~ pq.i. for this ODE, so that we might say "u,

Example 10 (Target ODE for Gaussian probability paths)

As before, let p,(-|z) = N (a2, 821,) for noise schedulers ay, B (see Equation (15)). Let ¢y = 8y, and Sy = 9,53,

denote respective time derivatives of «; and f3;. Here, we want to show that the conditional Gaussian vector

field given by

;arget(

17

x|z) = (0’4,5 - %at> z+ %x

converts noise pi,i; into data pgat.".

3.2 Conditional and Marginal Vector Fields

is a valid conditional vector field model in the sense of Theorem 9: its ODE trajectories X; satisfy X; ~
pi(+]2) = N(auz, B21,) if Xo ~ N(0,14). In Figure 6, we confirm this visually by comparing samples from the
conditional probability path (ground truth) to samples from simulated ODE trajectories of this flow. As you

can see, the distribution match. We will now prove this.

Proof. Let us construct a conditional flow model ;*#"(x|2) first by defining

target

g0 (2]2) = ez + Bz (21)
If X, is the ODE trajectory of ¥;*%*(-|z) with Xy ~ pinit = N(0,I3), then by definition
X, = P8 (Xo|2) = apz + B Xo ~ N(asz, B2I4) = ps(-]2).

We conclude that the trajectories are distributed like the conditional probability path (i.e, Equation (17) is

fulfilled). It remains to extract the vector field u,*"®%(z|z) from ¥;*®*"(z|z). By the definition of a flow

(Equation (2b)), it holds

d
awzarg(’t(ﬂz) = Ul (rTE (g]2)|2) for all z, z € R?
1) bz + B = ulP B (pz + Byz|z) for all z, z € R?

@ et e (w—ﬂw:) = ug*®(x|z) for all , 2 € R?
¢

@ Gy — &at z+ &x = uf*®(z)|z) for all z,z € R?
B Bt
where in (i) we used the definition of 1;**#* (z|z) (Equation (21)), in (i) we reparameterized x — (x —ay2)/5,

and in (4i7) we just did some algebra. Note that the last equation is the conditional Gaussian vector field as

we defined in Equation (20). This proves the statement.® O

%One can also double check this by plugging it into the continuity equation introduced later in this section.

See Figure 6 for an illustration of Theorem 9. Let’s gain some intuition for the marginal vector field. Bayes’

rule from statistics says that the following term describes a posterior distribution

V43 (ir"z)pdata(z)

@) = "posterior over data points z given noisy data z"
bt

where pgata(2) is the prior distribution. The marginal vector field then is simply a average: for every possible data
point z it takes the velocity u:(z|z) - i.e. the direction that would bring us to z - and then weighs this velocity by
how much we believe that x comes from z. Averaging over all data points, we obtain the marginal vector field.
The remainder of this section will make this intuition rigorous and prove Theorem 9. As the main mathemat-
ical tool, we will use the continuity equation, a fundamental equation in mathematics and physics. Define the

divergence operator div as

d 5
div(o)(@) =3 5—vi (@) (22)

3.2 Conditional and Marginal Vector Fields

where v} is the i-th coordinate of v;.

Theorem 11 (Continuity Equation)
Let us consider an flow model with vector field u;*®*" with Xy ~ pinic. Then X; ~ p; for all 0 < ¢ < 1 if and

only if
Oipe(z) = —div(pul®*)(z) forallz e RT,0<t <1, (23)

where 9;p,(z) = & p;(x) denotes the time-derivative of p;(z). Equation 23 is known as the continuity equation.

For the mathematically-inclined reader, we present a self-contained proof of the Continuity Equation in Section B.
Before we move on, let us try and understand intuitively the continuity equation. The left-hand side J;p:(x)
describes how much the probability p;(z) at « changes over time. Intuitively, the change should correspond to the
net inflow of probability mass. For a flow model, a particle X; follows along the vector field u;**#**. As you might
recall from physics, the divergence measures a sort of net outflow from the vector field. Therefore, the negative
divergence measures the net inflow. Scaling this by the total probability mass currently residing at z, we get that
the net —div(p,u;) measures the total inflow of probability mass. Since probability mass is conserved (always
integrates to 1), the left-hand and right-hand side of the equation should be the same! We now proceed with a

proof of the marginalization trick from Theorem 9.
Proof of Theorem 9. By Theorem 11, we have to show that the marginal vector field u{**®" as defined as in

Equation (18), satisfies the continuity equation. We can do this by direct calculation:
Ovpe(z) @ at/pt($|2)pdata(z)dz
:/atpt(l'lZ)pdata(Z)dZ
(i) / —div(pe(-2)us"" (-]2)) (@)paata(2)dz
@) iy (/pt(x|Z)u§arg°t(:1:|z)pdata(2)dz>
pe(x)

(1:’) —div (pﬂéarget) (.Z‘),

where in (i) we used the definition of p;(x) in Equation (12), in (#4) we used the continuity equation for the
conditional probability path p:(:|z), in (ii4) we swapped the integral and divergence operator using Equation (22),
in (iv) we multiplied and divided by p;(z), and in (v) we used Equation (18). The beginning and end of the above
chain of equations show that the continuity equation is fulfilled for u{*"#®*. By Theorem 11, this is enough to imply

Equation (19), and we are done. O

19

3.3 Learning the Marginal Vector Field

3.3 Learning the Marginal Vector Field

Now, we are ready to describe the training algorithm. The goal of flow matching is to train the neural network u{
such that it equals the marginal vector field ugarget. If this holds, we know that the endpoints X7 ~ pqata have the
desired distribution by Theorem 9. In the following, we denote by Unif = Unifg ;) the uniform distribution on the

interval [0, 1], and by E the expected value of a random variable. An intuitive way of obtaining u! ~ u{**** is to
use a mean-squared error, i.e. to use the flow matching loss defined as
Leni(0) = Erntmitamp, [|uf (2) — 0" () |%] (24)
(@) 0 target
= EinUnif,zmpaasaremp (1) Ut () — w5 (@)]17], (25)

where pi(z) = [pi(%|2)pdata(z)dz is the marginal probability path and in (i) we used the sampling procedure given
by Equation (12). Intuitively, this loss says: First, draw a random time ¢ € [0, 1]. Second, draw a random point z

from our data set, sample from p;(-|2) (e.g., by adding some noise), and compute v/ (z). Finally, compute the mean-

squared error between the output of our neural network and the marginal vector field u{*#(z). Unfortunately,
we are not done here. While we do know the formula for uzarget by Theorem 9, we cannot compute it efficiently.

Instead, we will exploit the fact that the conditional velocity field u{*®®*(z|z) is tractable. To do so, let us define

the conditional flow matching loss

Lerm(B) = Eontnit,ampasasamp (12 [luf () — 0™ (@]2)]%]. (26)
Note the difference to Equation (24): we use the conditional vector field u;*"®*"(x|z) instead of the marginal vector
ui™8*" (). As we have an analytical formula for u;*"#*"(x|z), we can minimize the above loss easily. But wait, what

sense does it make to regress against the conditional vector field if it’s the marginal vector field we care about?
As it turns out, by explicitly regressing against the tractable, conditional vector field, we are implicitly regressing

against the intractable, marginal vector field. The next result makes this intuition precise.

Theorem 12

The marginal flow matching loss equals the conditional flow matching loss up to a constant. That is,
Lem(0) = Lorm(9) + C,

where C' is independent of 6. Therefore, their gradients coincide:
VoLlrm(0) = VoLcorm(6).

Hence, minimizing Lopm(0) with e.g., stochastic gradient descent (SGD) is equivalent to minimizing Lrp(6)
with in the same fashion. In particular, for the minimizer 6% of Lcem(6), it will hold that u!” = u;®%, i.e.

the neural network will equal the marginal vector field (assuming an infinitely expressive parameterization).

20

3.3 Learning the Marginal Vector Field

Proof. The proof works by expanding the mean-squared error into three components and removing constants:

(3) arge
Leni(0) = Epnvmitanp [luf (@) — 0™ ()|%]
(11) r r
= Epntnitaonp, [[uf ()7 = 2uf (@) 7wy (2) + [lug™ (2)]|]

D Evvitamp, [160@)1] = 2Eenunit.ap, [0 (@) 055 ()] + Euntnity, anp 155 (@))

::Cl

Eintnit,z~paneaszpe (1) 104 (@)]1] = 2Eetnit,omp, [uf (2) T ;™8 ()] + C1

(i)

where (i) holds by definition, in (i) we used the formula ||a—b[|?> = |la||?> —2aTb+ ||b]|?, in (iii) we define a constant

C1 and in (iv) we used the sampling procedure of p; given by Equation (12). Let us reexpress the second summand:

1
Bt Unif,zpy (19 (2) Ty 8 (2)] @ //pt(x)uf(x)Tuzarget(x) dzdt

@ /1 / pe()uf ()" [/ ugmget(xz)pt(”zfxm(z)dz dzdt

‘W/// (2)TuE (] 2)py (] 2) panea(2) dz da dt

(“)) Tu:arget (.’L‘|Z)]

E;unit ,Z~Pdata,T~Dt (|2)[ug (x)

where in (i) we expressed the expected value as an integral, in (i) we use 77, in (ii9) we use the fact that integrals

are linear, in (iv) we express the integral as an expected value. Note that this was really the crucial step of the

target ()

proof: The beginning of the equality used the marginal vector field u; , while the end uses the conditional

target(

vector field u z|z). We plug is into the equation for Lry to get:

(1) arge
‘CFM (0) = EtNUnifaZNPdata,aint(-\Z) H|ut9 (I)HQ] - Z]EtNUnif,Zdiam,prt(~|z) [U? (»T)TUE & t(x‘z)] + Cl

(@)

= EpUnit empasia eope o (1] (2|2 = 20f (2) T g™ (2]2) + [[ug™™ (2]2) || — [[u* (2]2)]] + Cy

(i4%)

= EtNUnifvapdataerpt('lz)[”u?(x) targEt(|)H]+EtNUnifvapdataaszt('IZ)[|| target(‘)”]+Cl
C2

@) Lcerm(0) + Co + Cy
—_——

=:C

where in (i) we plugged in the derived equation, in (i) we added and subtracted the same value, in (iii) we used

the formula |ja —b[|? = ||la]|? —2aTb+||b||* again, and in (iv) we defined a constant in §. This finishes the proof. [J

Therefore, flow matching training consists of minimizing the conditional flow matching loss. The training
procedure is summarized in Algorithm 3 and visualized in Figure 7. Note that there are several striking features
about this algorithm: First, we never actually simulate any ODE during training. People call this feature of the
algorithm simulation-free. This makes training extremely cheap as you don’t have to roll out trajectories of the

ODE during training (which takes a lot of steps). Second, the training is a simple regression objective - we are just

21

3.3 Learning the Marginal Vector Field

regressing against u{*"***(x|z). So it is not too different from supervised learning after all. Finally, the algorithm

is extremely simple - it is hard to think of a much simpler training objective. All of this makes flow matching an
extremely appealing method for large-scale machine learning models. Once 1 has been trained, we may simulate

the flow model
dX, =uf(X,)dt, Xo ~ Pinis (27)

via e.g., Algorithm 1 to obtain samples X; ~ pgata. This whole pipeline is called flow matching in the literature
[15, 17, 1, 16]. Let us now instantiate the conditional flow matching loss for the choice of Gaussian probability

paths:

Example 13 (Flow Matching for Gaussian Conditional Probability Paths)
Let us return to the example of Gaussian probability paths p;(-|z) = N (ay2; 8214), where we may sample from

the conditional path via

e~ N0,Ig) = 1z =uz+ Bie ~ Nz, B214) = pi(-|2). (28)
As we derived in Equation (20), the conditional vector field u,**#**(2|z) is given by
uf? 8 (z]2) = [@, — &at z+ &x, (29)
Bt Bt

where ¢, = oy and B, = 9,3, are the respective time derivatives. Plugging in this formula, the conditional

flow matching loss reads

. B B
LerM(0) = Eytnit, e passasan(arz,82 1y L|Uf () — (at - Ezat z— Ezi’?HQ] (30)
(2) . :
= B Unit, zpasiase~ N (0, L) 1Uf (02 + Bre) — (cuz + Bee)|1?] (31)

where in (7) we plugged in Equation (28) and replaced = by a;z + Bie. Note the simplicity of Lopy @ We
sample a data point z, sample some noise € and then we take a mean squared error. Let us make this even more
concrete for the special case of oy = t, and 3; = 1 — t. The corresponding probability p;(x|2) = N (tz, (1 —t)?)
is sometimes referred to as the (Gaussian) CondOT probability path. Then we have a; = 1, Bt = —1, so that

£cfm(‘9) :Et"’UniﬂZ"’pdata’ENN(OgId)[Huf(tz + (1 —fe) = (&= €)||2]

Many famous state-of-the-art models have been trained using this simple yet effective procedure, e.g. Stable
Diffusion 3, Meta’s Movie Gen Video, and probably many more proprietary models. In Figure 7, we visualize

it in a simple example and in Algorithm 3 we summarize the training procedure.

Let us summarize the results of this section.

22

3.3 Learning the Marginal Vector Field

Algorithm 3 Flow Matching Training Procedure (for Gaussian CondOT path p;(z|2) = N (tz, (1 — t)?))

Require: A dataset of samples 2 ~ pgata, neural network u!
1: for each mini-batch of data do
2: Sample a data example z from the dataset.
3: Sample a random time ¢ ~ Unifjg y).
4: Sample noise € ~ N(0, 1)
5. Set

r=tz+ (1 —t)e (General case: © ~ pi(- | 2))

6: Compute loss

L(0) =luf () = (z =)| (General case: = [|uf (x) — u™*" (z]2)[|*)

7. Update 6 < grad_update(L(9)).
8: end for

Ground Truth

Learned

Figure 7: Illustration of Theorem 12 with a Gaussian CondOT probability path: simulating an ODE from a
trained flow matching model. The data distribution is the chess board pattern (top right). Top row: Histogram
from ground truth marginal probability path p;(z). Bottom row: Histogram of samples from flow matching model.

As one can see, the top row and bottom row match after training (up to training error). The model was trained
using Algorithm 3.

Summary 14 (Flow Matching)

Flow matching training consists of learning the marginal vector field u{*®. To construct it, we choose a

conditional probability path p;(z|z) that fulfils po(-|2) = pinit, P1(:|z) = J.. Next, we find a conditional vector

23

3.3 Learning the Marginal Vector Field

field u**#°" (z|2) such that its corresponding flow ¥;*"#(x|z) fulfills

Xo ~ Dt = Xi= :arget(Xo|Z)Npt(‘|Z),

or, equivalently, that ;" satisfies the continuity equation. Then the marginal vector field defined by
x|z z
u;arget(m) _ /u;arget(l_‘z)pt(|)pdata()dZ, (32)
pe(z)

follows the marginal probability path, i.e.,

Xo ~ Pinit, dXy = w™N(Xp)dt = Xy ~p; (0<t < 1). (33)
In particular, X; ~ pgata for this ODE, so that u{*®*" "converts noise into data", as desired. To learn it, we

minimize the conditional flow matching loss
Lrm(8) = Eontnit, ompassarenpe (1) [[Uf (@) — 0™ (2]2)]1%]. (34)

The most widely used example is the Gaussian probability path. For this case, the formulas become:

pi(x|2) =N (z; oztz,ﬂfld) (35)
u?OW(:ﬂz) = (dt = gZozt> z+ %:p (36)
Lcrm(0) =EtnUnit,ompaasascn (0,10) [11f (0222 + Bee) — (cuz + Bre)|1?] (37)

for noise schedulers oy, 3; € R, i.e. continuously differentiable, monotonic functions that we choose such that
Oéozﬁlzooqzﬁ():l (e.g. Oétzt,ﬂt=1—t).

24

4 Score Functions and Score Matching

In the last section, we showed how to train a flow model with flow matching. In this section, we discuss diffusion

models and demonstrate how to train them using score matching.

4.1 Conditional and Marginal Score Functions

So far, the central object of interest for our
investigation was a vector field w;(x). Diffu- q (x) vV lo g
sion models [31, 30] take a different perspec-

tive focused on score functions. Therefore,

NN R

N
NN

in this section, we will rephrase what we

have learned here in the language of score
functions - providing a novel perspective.
Let ¢(x) be an arbitrary probability distri-
bution. Then the score function of ¢ is de-

fined as Vlog ¢(x), i.e. asthe gradient of the

log-likelihood of ¢ with respect to x. The

score has an intuitive meaning: V logg(x)

is the direction of steepest ascent with re-
Figure 8: Illustration of score function Vloggq(z) plotted as black

spect to log-likelihood. This is illustrated
rows (right) of a general probability distribution ¢(z) (left).

in Figure 8.

Let us return to the setting of condi-
tional probability paths p;(x|z) and marginal probability paths p,(x) as in Section 3. Then we can equivalently
define the conditional score function as Vlog p:(z|z) and the marginal score function as Vlogp:(z). Similar to

Equation (18), the marginal score can be expressed via the conditional score function Vp;(z|z) via

Dt (xlz)pdata(z)

PR (38)

Vlog pi(x) =/V10gpt(fv|2)

Hence, the relation between the conditional and marginal score is analogous to the relation between the
conditional and marginal vector field. This import result suggests that it might be possible to develop a flow-
matching-like loss for the score function, an idea we’ll revisit momentarily. Note that we can prove Equation (38)

via

_ V(@) _ V[pe(@]2)paaa(2)dz [Vpi(x|2)paata(z)dz /vlogpt(x|z)pt(ﬂc\2)pdm(2)dZ’ (39)

Vieepi(e) = = 1) i) () (@)

where we have used the rule 0, logy = 1/y combined with the chain rule twice.

Example 15 (Score Function for Gaussian Probability Paths.)
For the Gaussian path p;(z|z) = N(z; 42, 8714), we can use the form of the Gaussian probability density (see

25

4.1 Conditional and Marginal Score Functions

Equation (92)) to get

T — oz

B

Vlog pi(z]z) = Vg N (x; arz, 7 1a) = — (40)

Note that the score function for a Gaussian probability path is a linear function of x and z. The same is true

for the conditional vector field u;(z|z) (see Equation (20)). It is thus possible to convert between the two, as the

next proposition illustrates.

Proposition 1 (Conversion Formula for Gaussian Probability Paths)
For the Gaussian probability path p;(x|2) = N(a;2, 3214), the conditional (resp. marginal) vector field and the
conditional (resp. marginal) score are related by the following identities
target _ _ 2 at _ dt
uy 5 (x|2) =a;Vlog pe(z|2) + bz, ar = — (/5% by = — (41)

Qi

uy™ (2) =a,V log py (x) + by (42)

In particular, we note that the conditional (resp. marginal) vector field can be recovered from the conditional

(resp. marginal) score, and vice versa.

Proof. For the conditional vector field and conditional score, we can derive:

W) (at_gtat> +% m(zzt_ m) (azﬁ >+t —(3;“— tﬂt)wogpt(mwjzx
t

where in (i) we just did some algebra. By taking integrals, the same identity holds for the marginal flow vector

field and the marginal score function:

utarget z utdrget zlz pt(x‘z)pdata(z) 5= a o 2|z T pt<x|2>pdata(z) g
(@) = [uirret ol PRz 0,V 0 pu(alz) + bra) P el

(Qatv log p(z) + bex

where in (i) we used Equation (38) and the fact that posterior density integrates to 1. O

target .
a8t we've also learned the score function

Proposition 1 is striking because it says that once we’ve learned wu;
Vlogpi(x), and vice versa. Therefore, many diffusion models learn the score function Vlogp:(z) instead via a

neural network. We will discuss this in Section 4.3.

Remark 16 (Reparameterization of the Score)

The reparameterization formula for Gaussian probability paths in Equation (41) is possible because both sides of
the equation depend only on x, the constants ay, ay, 5y, B:, and the posterior mean E. |z [2] (see Equation (38)).
Since both z and the constants are easily available, it follows that any third quantity from which E,, [2] may
be recovered can in turn be used to recover the unconditional vector field and score. Further, doing so might

even be preferable from a numerical/training stability standpoint. One common choice is the posterior mean

26

4.2 Sampling with SDEs

Ground-Truth Conditional Probability Path Samples from Conditional SDE Trajectories of Conditional SDE
* z * z * z
o t=0.00 * t=0.00
t=0.33 t=0.33
t=0.67 ° t=0.67
t=1.00 t=1.00

Ground-Truth Marginal Probability Path Samples from Learned Marginal SDE Trajectories of Learned Marginal SDE
s t=0.00 . » t=0.00
t=0.33) t=0.33
t=0.67 t=0.67
t=1.00 t=1.00

Figure 9: Mlustration of Theorem 17. Simulating a probability path with SDEs. This repeats the plots from
Figure 6 with SDE sampling using Equation (46). Data distribution pgata in blue background. Gaussian pini; in
red background. Top row: Conditional path. Bottom row: Marginal probability path. As one can see, the SDE
transports samples from pi,;¢ into samples from 4, (for the conditional path) and to pgata (for the marginal path).

itself, often referred to as the denoiser. Formally, we define the conditional and marginal denoiser as

Dial) =2 Difa)= [o2 0nlDg, O g Bl) —) (43)

Here, (i) follows from an equivalent derivation as in Proposition 1. The denoiser has a very intuitive interpre-
tation: it is the expected value of clean data z given noisy data x.* People often call such models denoising

diffusion models as learning D; and learning u,*"#" are theoretically equivalent.

%Food for thought: will the denoiser always output a “clean” data point? Why or why not, and what might this depend on?

4.2 Sampling with SDEs

So far, we have demonstrated how one can construct a trajectory X; of an ODE that follows a desired probability

path p, via a marginal vector field u;*"***. But this approach is constrained to flow models. What about diffusion

27

4.2 Sampling with SDEs

models? Using score functions, let us now extend this result to SDEs.

Theorem 17 (SDE Extension Trick)

Define the conditional and marginal vector fields u;**#**(z|z) and u{*"***(x) as before. Then, for any diffusion
coefficient o, > 0, we may construct an SDE by adding stochastic dynamics to the dynamics of the original
ODE as follows:

2
X0 ~ Pinit, dX; = ufg“rget(Xt)dt + %V log py (X;)dt + o, dW; (44)

2
= [u;mget (X)) + %V logpf(Xf)} dt + o, dW;

= X,~p (0<t<1). (45)

In particular, X; ~ pgata for this SDE. The stochastic dynamics are closely related to the Langevin dynam-
ics, and can be thought of as injecting noise while preserving the marginal distribution p;. We discuss Langevin

dynamics briefly in Remark 20.

We illustrate the dynamics described in Theorem 17 in Figure 9. As one can see, the trajectories are now zig-
zagged, illustrating the stochastic nature of the SDE’s evolution. As Theorem 17 establishes however, the marginals
p: stay the same. Note that the above result is striking in that we can choose any diffusion coefficient o; > 0 even
after having trained the networks. In theory, Theorem 17 holds for any choice of o;. However, in practice, we suffer
from both training error (the neural network does not perfectly approximate the marginal vector field and score)
and simulation error (e.g. for o; > 0, we would need to take prohibitively small step sizes in Algorithm 2). In
practice, for a fixed trained model, there is then an optimal o; > 0 which can be empirically determined [13, 1,
18].2

For Gaussian probability paths, we get the score function for free by having learned the marginal vector field.

Example 18 (Gaussian SDE Extension Trick)
By Proposition 1, for Gaussian probability paths, we can express the SDE from Theorem 17 purely using score
functions:

2
Xo ~ Dinit s dXt = [(at + 0;) VIngt(Xt) + tht dt + O'tth (46)

=X, ~p, (0<t<1) (47)

where aq, b; are defined as in Proposition 1.

In the remainder of this section, we will prove Theorem 17 via the Fokker-Planck equation, which extends the
continuity equation from ODEs to SDEs. To do so, let us first define the Laplacian operator A via
d
Aw(z) =

i=1

82

o Wt
82:101-

(x) = div(Vwy) (z), (48)

)

2Again, we stress that the existence of a “best o¢” is an artifact of imperfectly trained models and finite compute budgets rather
than a theoretical statement about the dynamics in their continuous limit.

28

4.2 Sampling with SDEs

for scalar field wy : R — R.

Theorem 19 (Fokker-Planck Equation)
Let p; be a probability path and let us consider the SDE

Xo ~ pinit, dX; = we(Xy)dt + oy dW;.

Then X; has distribution p; for all 0 < ¢ < 1 if and only if the Fokker-Planck equation holds:

2
Ope(z) = —div(peuy) (z) + %Apt(x) forall z € R4, 0<t <1, (49)

A self-contained proof of the Fokker-Planck equation can be found in Section B. Note that Theorem 11 is recovered
from the Fokker-Planck equation when oy = 0. The additional Laplacian term Ap; might be hard to rationalize at
first. Those familiar with physics will note that the same term also appears in the heat equation (which is in fact
a special case of the Fokker-Planck equation). Heat diffuses through a medium. We also add a diffusion process
(not a physical but a mathematical one) and hence we add this additional Laplacian term. Let us now use the

Fokker-Planck equation to help us prove Theorem 17.

Proof of Theorem 17. By Theorem 19, we need to show that that the SDE defined in Equation (46) satisfies the

Fokker-Planck equation for p;. We can do this by direction calculation:

Oipe() @ _ div(pyui™e) ()

(44) . target 0752 Ut2
= —div(pyu; " *7) (z) — 7Apt(37) + ?Apt(fﬂ)

Gi)) 1 target .o} o}
=" — div(psu,)(z) — le(Eth)@) + 7Apt(a:)

2 2

D) div(paul™E) (z) — div(p, [U;V logpt])(z) + %Apt (x)
2 2

©_ giv <pt [uzarget + ?Vlogpt}) (x) + %Apt(x),

where in (i) we used Theorem 11, in (i¢) we added and subtracted the same term, in (éii) we used the definition
of the Laplacian (Equation (48)), in (iv) we used that Vlegp, = vp]f’t, and in (v) we used the linearity of the

divergence operator. The above derivation shows that the SDE defined in Equation (46) satisfies the Fokker-Planck

equation for p;. By Theorem 19, this implies X; ~ p; for 0 <t < 1, as desired. O

Remark 20 (Langevin Dynamics, Optional)
The above construction has a famous special case when the probability path is constant, i.e. p; = p for a fixed

distribution p. In this case, we set u,**#"" = 0 and obtain the SDE

2
dX; = %Vlog p(X1)dt + oy dW, (50)

which is commonly known as Langevin dynamics. The fact that p; is constant implies that Oypi(z) = 0. It

29

4.3 Score Matching

Samples at t=0.0 Samples at t=1.7 Samples at t=3.3 Samples at t=5.0

Density of Samples at t=0.0 Density of Samples at t=1.7 Density of Samples at t=3.3 Density of Samples at t=5.0

Y s s s

‘e - © e S

Figure 10: Top row: Particles evolving under the Langevin dynamics given by Equation (50), with p(z) taken to
be a Gaussian mixture with 5 modes. Bottom row: A kernel density estimate of the same samples shown in the
top row. As one can see, the distribution of samples converges to the equilibrium distribution p (blue background
colour).

follows immediately from Theorem 17 that these dynamics satisfy the Fokker-Planck equation for the static path
pt = p in Theorem 17. Therefore, we may conclude that p is a stationary distribution of Langevin dynamics,
so that

Xo~p = Xi~p (t>0).

As with many Markov processes, these dynamics converge to the stationary distribution p under rather general
conditions (see Section 4.2). That is, if we instead we take Xy ~ p’ # p, so that X; ~ p}, then under mild
conditions p; — p. This fact makes Langevin dynamics extremely useful, and it accordingly serves as the basis
for e.g., molecular dynamics simulations, and many other Markov chain Monte Carlo (MCMC) methods across
Bayesian statistics and the natural sciences. In particular, the Ornstein-Uhlenbeck processes are recovered
as the special case of the Langevin dynamics when p is a Gaussian serves, and serve as the basis for initial
formulations of diffusion models. The Langevin dynamics also have elegant connections to the theories of

gradients flows and optimal transport, both of which are beyond the scope of these notes.

4.3 Score Matching

It remains to show how we can learn the marginal score function Vlog p:(z). Of course, for Gaussian probability

paths, we can simply transform uzarg‘g‘t (z) by Proposition 1. However, what about in general? It turns out that

30

4.3 Score Matching

we can also learn marginal score functions directly. To approximate the marginal score V log p;, we use a neural
network that we call score network s? : R? x [0,1] — R? In the same way as before, we can design a score
matching loss and a denoising score matching loss:
2 .
Lsm(0) = Epotnit, zopania; 2ops (-]2) [Hsf(m) — Vlog p; (x)H } » score matching loss
2 .. .
Lcsm(0) = Eitnit, zopanta, zpe(-]2) Msf(m) — Vlogpi(x|2)|| } » conditional score matching loss

where again the difference is using the marginal score V log p;(z) vs. using the conditional score V log p;(z|z). As

before, we ideally would want to minimize the score matching loss but can’t because we don’t know V logp;(z).

But similarly as before, the denoising score matching loss is a tractable alternative:

Theorem 21

The score matching loss equals the denoising score matching loss up to a constant:
Lsm(0) = Lesm(9) + C,

where C' is independent of parameters . Therefore, their gradients coincide:
VoLsm(f) = VoLcsm(0).

In particular, for the minimizer 6*, it will hold that s? " = Vlogp;.

Proof. Note that the formula for V log p; (Equation (38)) looks the same as the formula for u{**#** (Equation (18)).

Therefore, the proof is identical to the proof of Theorem 12 replacing uiargﬁ with Vlog p;. O

Example 22 (Denoising Diffusion Models: Score Matching for Gaussian Probability Paths)
Let us instantiate the denoising score matching loss for the case of p;(x|2) = N (a2, B214). As we derived in

Equation (40), the conditional score V log p:(x|z) has the formula
T — oz
Bt

Plugging in this formula, the conditional score matching loss becomes:

(51)

Vlogpi(z|z) = —

T — uz

s9(x) + 3

T

£
B

Losm(0) = Eeavnif, zopanta, zops (|2) [

@

0
= EtNUnif, 2~Pdatas €e~N(0,14) l S¢ (OétZ + 57:6) +

2]
1

= Kt Unif, z~paata, e~N(0,14) {,62 Hﬁtsf(atz + Bie) + eHz]
t

where in (i) we plugged in Equation (28) and replaced = by ayz + Bie. Note that the network s¢ essentially

learns to predict the noise that was used to corrupt a data sample z. This explains why the above training

31

4.3 Score Matching

loss is called denoising score matching. It was soon realized that the above loss is numerically unstable for
Bt = 0 close to zero (i.e. denoising score matching only works if you add a sufficient amount of noise). In
some of the first works on denoising diffusion models (see Denoising Diffusion Probabilitic Models, [9]) it was
therefore proprosed to drop the constant 2y in the loss and reparameterize s/ into a noise predictor network
€ 1 R% x [0,1] — R? via: t

—Bisl(x) =el(x) = Lpppm(9) =Kt~ Unit,z~paaa,e~N(0,12) [1€/ (cwwz + Bre) — €||]

As before, the network ¢/ essentially learns to predict the noise that was used to corrupt a data sample z. In

Algorithm 4, we summarize the training procedure.

Algorithm 4 Score Matching Training Procedure for Gaussian probability path

Require: A dataset of samples z ~ pgata, score network s? or noise predictor ¢/

1: for each mini-batch of data do
2: Sample a data example z from the dataset.

3: Sample a random time ¢ ~ Unifg y).
4: Sample noise € ~ N(0, I)
5. Set xy = oz + Pre (General case: z; ~ pi(-|2))
6: Compute loss
€
L(0) =||s% (z¢) + ﬂ—H2 (General case: = ||s?(z;) — V1ogps(x¢]2)||?)
t

Alternatively: £(8) =||€? (z;) — ¢||?

7. Update the model parameters 6 via gradient descent on £(0).
8: end for

Let us summarize the results of this section:

Summary 23 (Score Functions, Score Matching, and Stochastic Sampling)

Let p¢(z|z), pt(x) be the conditional and marginal probability path. The conditional score function is given
by Vlog p:(z|z) and the marginal score function is given by V log p;(z). For every diffusion coefficient o; > 0,
the trajectories of the following SDE follow the probability path:

2
Xo ~Pinit, dX; = uiarget(Xt) + J%Vlogpt(X,g) dt + o dW; (52)

where is u{*°*(x) be the marginal vector field as before (see Equation (18)).

Score Matching. To learn the marginal score function V log p; (), we can use a score network s and train

it via denoising score matching

Lesm(0) = Eopunn, tmUnif, empe (1) 185 (2) — Vog pe(z]2)]1?] (denoising score matching loss) (54)

32

4.3 Score Matching

Gaussian Probability Paths. For the - most important - case of a Gaussian probability path p;(x|z) =

N (x;az2, B21,), there is no need to train s and uf separately as we can convert them via the formula:

o . &
uf () =ars? (z) + bw, a; = (ﬁft - &&) b= —
Qg it
After training, we can simulate the following SDE
Utz) Ugat
Xo ~ Pinit » dXt = 1 + — ut (Xt) — 7Xt dt + O'tth (55)
2b; 2b
2
= |:<G,t + 0;) S?(Xt) + tht:| dt + O'tth (56)

for any diffusion coefficient o; > 0 to obtain approximate samples X; ~ pgata- One can empirically find the

optimal o; > 0.

33

5 Guidance: How To Condition on a Prompt

So far, the generative models we considered were unguided, e.g. an image model would simply generate some image.
Mathematically speaking, this meant that our model returned samples from an unconditional data distribution
Pdata(z). However, in most cases, our goal is not to merely generate an arbitrary object, but to generate an object
conditioned on some additional information. In other words, we want to guide the model to generate objects of
a certain kind. For example, one might imagine a generative model for images which takes in a text prompt y,
and then generates an image x that fits to the text prompt y. As discussed in Section 1, this means that we want
to sample from pqata(2|y), that is, the guided data distribution conditioned on y. We are going to discuss this in

this section.

Remark 24 (Terminology)
To avoid a notation and terminology clash with the use of the word “conditional” to refer to conditioning on
Z ~ Pdata (conditional probability path/vector field), we will make use of the term guided to refer specifically

to conditioning on y such as a text prompt.

5.1 Vanilla Guidance

First, we discuss the “standard” way of how one would go about building a guided generative model. The short
answer is as follows: We simply provide the input prompt y to the network during training and inference and do
everything in the same way as before. We formalize this in the following. We think of a conditioning variable or
prompt y to live in a space). When y corresponds to a text-prompt, for example,) is the space of all texts.
When y corresponds to some discrete class label,) would be discrete. We pose no constraints on).

We define a guided diffusion model to consist of a guided vector field u/(-|y), parameterized by some neural

network, and a time-dependent diffusion coeflicient oy, together given by

Neural network: u? : RY x Y x [0,1] = R?, (z,y,t) — uf (z]y)

Fixed: 0, : [0,1] — [0,00), t +— 0y

Notice the difference from summary 7: we are additionally guiding u{ with the input y € J. For any such y €),

samples may then be generated from such a model as follows:

Initialization: X ~ pinit » Initialize with simple distribution (such as a Gaussian)
Simulation: dX; = u!(X;|y)dt + o, dW,; » Simulate SDE from ¢t =0 to t = 1.
Goal: X ~ paata(-|y) » Goal is for X; to be distributed like pgata(-|y).

When o; = 0, we say that such a model is a guided flow model. In the following, we restrict ourselves to flow
matching and flow models to make things more concise but everything applies similarly to the general case.
Next, we discuss: How would we train a guided flow model uf(z|y)? A simple trick might to fix our choice of

y, and to take our data distribution as pgata(z]y). Then we have recovered the unguided generative problem as

34

5.2 Classifer-Free Guidance

Figure 11: Image generation with prompt/class y =‘corgi dog”. Left: samples generated with vanilla guidance -
the images do not fit well to the prompt. Right: samples generated with classifier guidance and w = 4. As shown,
classifier-free guidance improves the adherence to the prompt. Figure taken from [10].

before, and we can accordingly construct a generative model using the conditional flow matching objective, viz.,

E - pausa o (1) 102 (@ly) — u™ (z]2)]|2. (57)

Note that the label y does not affect the conditional probability path p;(-|z) or the conditional vector field u{**#**(z|z)
(although in principle, we could make it dependent). Expanding the expectation over all such choices of y, we thus

obtain a guided conditional flow matching objective

Eguided target (

S (0) = B2y mpana(29), t~Unif[0,1], oo (1) 167 (1Y) — g x|2)|1%. (58)

One of the main differences between the guided objective in Equation (58) and the unguided objective from
Equation (26) is that here we are sampling (z,y) ~ Pdata rather than just z ~ pgata. The reason is that our data
distribution is now, in principle, a joint distribution over e.g., both images z and text prompts y. In practice, this
means that a PyTorch implementation of Equation (58) would involve a dataloader which returned batches of both

z and y.

5.2 Classifer-Free Guidance

In theory, vanilla guidance should lead to a faithful generation procedure of pqata(-|y). However, it was soon
empirically realized that images samples with this procedure did not fit well enough to the desired label y (see
Figure 11). This can have a diversity of reasons: the model might underfit (i.e. we do not actually learn the true
marginal vector field) or our data might be imperfect (e.g. text-image pairs from the world wide web have a lot
of errors). Therefore, to truly generate samples that fit better to a prompt, we have to find a way to artificially
reinforce the prompt variable y. The main technique for doing so is called classifier-free guidance that is widely

used in the context of state-of-the-art diffusion models, and which we discuss next.

35

5.2 Classifer-Free Guidance

Classifier Guidance. For simplicity, we will focus here on the case of Gaussian probability paths. Recall from Equa-
tion (15) that a Gaussian conditional probability path is given by p;(-|2) = N (ayz, B214) where the noise schedulers

oy and B are continuously differentiable, monotonic, and satisfy ag = 81 = 0 and «; = By = 1. Further, recall

that we can use Proposition 1 to rewrite the guided vector field u;*"#*"(x|y) in the following form using the guided
score function V log p;(x|y)
w8 (2|y) = a;V log py(z]y) + by, (59)

Next, realize that ps(z|y) is a conditional density. Hence, we can use Bayes’ rule to rewrite the guided score as
:pt(x)pt(ny)
pe(y)

V log pi(aly) =V log (W

where we used that the gradient V is taken with respect to the variable x, so that Vlogp:(y) = 0. We may thus

pe(xly) (60)

) = Vlogpi(x) + Vlog pi(y|x), (61)

rewrite
ug™E (zly) = b + ar(Vlog py(x) + Viog pe(ylr)) = w,™* () + a;V log py(y|x).
Notice the shape of the above equation: The guided vector field uiarget(aﬂy) is a sum of the unguided vector field
target

Uy (z) plus a gradient of the likelihood p;(y|z) of the guidance variable y. As people observed that their image
2 did not fit their prompt y well enough, it was a natural idea to scale up the contribution of the Vlogp;(y|x)

term, yielding

g (z]y) = ul e (z) + wa,Vlog py(y|z), (classifier guidance) (62)
where w > 1 is known as the guidance scale. How can we learn the term logp;(y|z)? Note that this can be
considered as a sort of classifier of noised data (i.e. it gives the log-likelihoods of y given). So we can simply learn
it via supervised learning. This leads to classifier guidance [4, 29]. Classifier guidance was largely superseded by
classifier-free guidance, which is why we will not discuss it further here. However, it forms the basis for the classifier-
free guidance, as we will see next. Finally, note that this is a heuristic: for w # 1, it holds that i, (x|y) # u;*"(z|y),

i.e. therefore not the “true” guided vector field.

Classifier-Free Guidance. While classifier guidance is possible in principle, it comes with difficulties: The first
thing is that we need to train a classifier alongside a flow/diffusion model - so we have 2 networks instead of 1.
Further, if the y is high-dimensional, e.g. a text prompt and not just a class, then p;(y|z) might be very hard to
learn and the gradient Vlog p;(y|z) hard to obtain. For this reason, classifier-free guidance [10] that results in
the theoretically equivalent effect as classifier guidance but without having to train a separate classifier.

To do so, we may again apply the equality

Vlog pi(x|y) = Viog pi(z) + V log p; (y|x)

36

5.2 Classifer-Free Guidance

to obtain

target (117 + watVlngt (y|1’)

)
= 4" (@) + way(V log pi(aly) - V log p(x))
)~

target (

x) — (whix + warVlog pi(x)) + (wbix + wa:V log pi(z|y))

t t
targc ()

target
+ wu B

(1 —w)u zly)-

We may therefore express the scaled guided vector field 4. (z|y) as the linear combination of the unguided vector
field w8 () with the guided vector field u{*"#**(|y). The idea might then to to train both an unguided u{****(x)

(using e.g., Equation (26)) as well as a guided ;& (

x|y) (using e.g., Equation (58)), and then combine them at
inference time to obtain @;(x|y). "But wait!", you might ask, "wouldn’t we need to train two models then !7". It
turns out that we can train both in one model: we may augment our label set with a new, additional @ label that
denotes the absence of conditioning. We can then treat u,®"(z) = u{**#**(2|@). With that, we do not need to
train a separate model to reinforce the effect of a hypothetical classifier. This approach of training a conditional and
unconditional model in one (and subsequently reinforcing the conditioning) is known as classifier-free guidance

(CFG) [10].

Remark 25 (Derivation for general probability paths)

Note that the construction
iy (xly) = (1 — w)us™ (z) + wu™ (z]y),

is equally valid for any choice probability path, not just a Gaussian one. When w = 1, it is straightforward
to verify that @ (x|y) = ui*®*(x|y). Our derivation using Gaussian paths was simply to illustrate the intu-
ition behind the construction, and in particular of amplifying the contribution of a hypothetical “classifier”

V log pi(ylz).

Training and Classifier-Free Guidance. We must now amend the guided conditional flow matching objective from
Equation (58) to account for the possibility of y = &. The challenge is that when sampling (z,y) ~ Paata, we will
never obtain y = @. It follows that we must introduce the possibility of y = & artificially. To do so, we will define
some hyperparameter n to be the probability that we discard the original label y, and replace it with &. We thus
arrive at our CFG conditional flow matching training objective

L& (0) = Eolluf (wly) — u™* (z]2)]? (63)

O = (2,y) ~ Pdata(2,¥), t ~ Unif[0, 1], z ~ p:(:|z), replace y = @ with prob. n (64)

We summarize our findings below.

Summary 26 (Classifier-Free Guidance for Flow Models)

targct(

Civen the unguided marginal vector field u;**®*(z|@), the guided marginal vector field u zly), and a

37

5.2 Classifer-Free Guidance

guidance scale w > 1, we define the classifier-free guided vector field ;(x|y) by
y(zly) = (1 — w)u™™" (2]2) + wuy™ (zy). (65)

By approximating u,*"#*"(z|2) and u{*"#**(x|y) using the same neural network, we may leverage the following
classifier-free guidance CFM (CFG-CFM) objective, given by

LEin(0) = Eglluf (2ly) — u™* (2]2)|® (66)
O = (2,y) ~ Pdata(2,¥), t ~ Unif[0, 1], z ~ p(:|z), replace y = & with prob. n (67)

In plain English, £SES, might be approximated by

(2,9) ~ Pdata(z,Y) Sample (z,y) from data distribution.
t ~ Unif[0, 1) Sample ¢ uniformly on [0, 1).
x ~ p(z|2) Sample = from the conditional probability path p:(z|z).

with prob.n, y < @ Replace y with @ with probability 7.

LER(O) = lluf (zly) — w5 (a]2)|?

vV v.v. Vv Y

Regress model against conditional vector field.
At inference time, for a fixed choice of y, we may sample via

Initialization: X ~ pinit(z) » Initialize with simple distribution (such as a Gaussian)
Simulation: dX; = @/(X,|y)dt » Simulate ODE from t =0 to t = 1.
Samples: X, » Goal is for X; to adhere to the guiding variable y.

Note that the distribution of X is not necessarily aligned with X ~ pqata(-|y) anymore if we use a weight w > 1.
However, empirically, this shows better alignment with conditioning. Classifier-free guidance is therefore a heuristic
that is predominantly justified by its excellent empirical results. In fact, almost any image or video that you see that
is Al-generated relied heavily on classifier-free guidance w > 4. In Figure 11, we illustrate class-based classifier-free
guidance on 128x128 ImageNet, as in [10]. Similarly, in Figure 12, we visualize the affect of various guidance scales

w when applying classifier-free guidance to sampling from the MNIST dataset of handwritten digits.

Remark 27 (Guidance for Diffusion Models)
It is straight-forward to extend the discussion from flow models to diffusion models. One simply replaces u (z|y)

by @ (x|y) and samples using SDEs as discussed in Section 4.

38

N
o

VT NN WN~0
VPO OANL LS -
DN TP WY -0
NN TARWOLNQ
COVN TR WINND
s NAEWHY -0
VY sURWNMNSD
VN echaWwErr~Q
SR dNQA W MSN0FR
SN £ €L ~0
VW oA QWYY ~0
SN~ ARKRWPNNG
DouNshARrWL—O
<V QYN &NV LW P~ 0
—9NaNSLwp~Q

X
|1
2.2
3 3
Y ¢
$5
46
77
8 8
9 9
| 3

wovVantbiuN0

00 0
(2 /
2 -
3% J
q 4
55 s
6 6 6
T 2
¥ < 8
59 1
0/ ¢

W
a
W

b3 74090748

Figure 12: The effect of classifier-free guidance applied at various guidance scales for the MNIST dataset of hand-
written digits. Left: Guidance scale set to w = 1.0. Middle: Guidance scale set to w = 2.0. Right: Guidance scale
set to w = 4.0. You will generate a similar image yourself in the lab three!

Algorithm 5 Classifier-free guidance training for Gaussian probability path p;(z|2) = N (x; a2, B214)

Require: Paired dataset (2,%) ~ pdata, neural network u!
1: for each mini-batch of data do
2: Sample a data example (z,y) from the dataset.

Sample a random time ¢ ~ Uniffg 1.

Sample noise € ~ N(0, 1)

Set © = azz + Bie

With probability p drop label: y < @

Compute loss

L(0) =luf (zly) — (Gee + Be2)|?

8: Update the model parameters 0 via gradient descent on £(6).
9: end for

6 Building Large-Scale Image or Video Generators

In the previous sections, we learned how to train a flow matching or diffusion model to sample from a distribution
Pdata(x|y). This recipe is general and can be applied to a variety of different data types and applications. In
this section, we examine in depth the particular cases of large-scale image and video generation, and including
well-known models such as FLUX 2.0, Stable Diffusion 3, Nano Banana and VEO-3 or Meta Movie Gen Video.
Finally, we’ll apply what we’ve learned so far in the lab to build our own version of such models from scratch! This

section is broadly arranged as follows:

1. Neural network architectures: We first discuss how raw conditioning input, including the time ¢, and guidance
variable yrayw (i.€., a discrete class label or raw text), is converted, or embedded into a vector-valued form

digestible by the model u/(x|y) itself. Then we discuss popular architectural choices for uf(z|y), including

39

6.1 Neural Network Architectures

the U-Net and diffusion transformer.

2. Latent Space: We discuss variational autoencoders, which allow for generative modeling in a lower dimen-

sional latent space, thereby enabling ultra high-resolution image generation.

3. Case Studies: Finally, we will examine in depth the two state-of-the-art image and video models mentioned

above - Stable Diffusion and Meta MovieGen - to give you a taste of how things are done at scale.

6.1 Neural Network Architectures

Let us first turn our attention toward the design of scalable neural network architectures for flow and diffusion
models targeting image-like modalities (e.g., images and videos). Specifically, we’ll explore how the task of the
(guided) vector field uf(x|y) with parameters 6 is implemented in practice. Note that the neural network must
have 3 inputs: a vector z € R?, a conditioning variable y €), and a time value ¢ € [0, 1], as well as one output, a
vector uf (z|y) € R%. For low-dimensional distributions (e.g. the toy distributions we have seen in previous sections),
it is sufficient to parameterize u?(x|y) as a multi-layer perceptron (MLP), otherwise known as a fully connected
neural network. That is, in this simple setting, a forward pass through uf(z|y) would involve concatenating our
input z, y, and ¢, and passing them through an MLP. However, for complex, high-dimensional distributions, such as
those over images, videos, and proteins, an MLP will likely not suffice, and it is common to use special, application-
specific architectures. For the remainder of this subsection, we will consider the case of images (and by extension,
videos). First, we’ll consider how the raw conditioning information - the time ¢ and the conditioning variable y
- are embedded into a vector-valued form digestible by the actual model. Second, we’ll consider two common
architectural architectural choices for such a model: the U-Net [27, 9, 12, 4], and the diffusion transformer (DiT)
[5, 20, 18].

6.1.1 Embedding the Conditioning Variables

Embedding Time. For simple toy models, concatenating the raw value of ¢ to the input is sufficient to train a
reasonably performant network. In practice, the scalar time is often embedded in a higher dimensional space using
Fourier features, allowing the model to more faithfully capture high-frequency time dependence [32]. Explicitly,

the featurization is given by

2 T
TimeEmb(t):\/;[cos(Qﬂwlt) oo cos(2mwgyat) sin(2mwit) .- sin(27rwd/2t)} , (68)

where the frequencies w; are set in the following way

T
Wi = Wnin (wma"> L i=1,....d/2 (69)

Wmin

This choice of TimeEmb is a standard choice but this exact form is not strictly necessary. Rather, the above
is simply a convenient way of obtaining a normed embedding of dimension d, i.e. ||TimeEmb(¢)|| = 1 (because

sin® 4 cos? = 1).

Embedding Class Labels. When y,., € ¥ 2 {0,..., N} is just a class label, then it is often easiest to simply

learn a separate embedding vector for each of the N 4 1 possible values of y,.w, and set y to this embedding vector.

40

6.1 Neural Network Architectures

4 N\
/| ———
/ a
/ Scale —
Noise Y // \
Pointwise
32 xiz x4 32x?;2x4 // pac s,
q ! P th
Linear and Reshape scale, shit <1282 | awasia pup Text
. / f ‘ Encoder i l l l
Layer Norm e —
Layer Norm / ’
T T, | T3 N
1 —
N x DiT Block Soale il I, LT | LTy L [Ty
1
T T Multi-Head " . . .
. e oa I, LT | LTy [Ty | LTy
Patchify Embed \\ SRR P
1
| \\ Seale, Shit | E';"ci%eer Lo 5Ty T | L Ty
Noised Timestep t \\ Layer Norm MLP
Latent 0 AN —]
32x32x4 Label y _ Input Tokens Conditioning Y,
Ty T [INTy | IT3 | . |IyTy
Latent Diffusion Transformer DiT Block with adaLN-Zero

Figure 13: Left: An overview of the diffusion transformer architecture, taken from [20]. Right: A schematic of the
contrastive CLIP loss, in which a shared image-text embedding space is learned, taken from [24].

One would consider the parameters of these embeddings to be included in the parameters of u?(x|y), and would

therefore learn these during training.

Embedding Textual Input When y,,,, is a text-prompt, the situation is more complex, and approaches largely
rely on frozen, pre-trained models. Such models are trained to embed a discrete text input into a continuous vector
that captures the relevant information. One such model is known as CLIP (Contrastive Language-Image Pre-
training). CLIP is trained to learn a shared embedding space for both images and text-prompts, using a training
loss designed to encourage image embeddings to be close to their corresponding prompts, while being farther from
the embeddings of other images and prompts [24]. We might therefore take y = CLIP(yray) € RIHF to be the
embedding produced by a frozen, pre-trained CLIP model. In certain cases, it may be undesirable to compress the
entire sequence into a single representation. In this case, one might additionally consider embedding the prompt
using a pre-trained transformer so as to obtain a sequence of embeddings. It is also common to combine multiple
such pretrained embeddings when conditioning so as to simultaneously reap the benefits of each model [7, 23]. For

our purposes, one can simply assume that after applying such a model the prompt embedding has shape

PromptEmbed(yraw) € RS*k

6.1.2 Diffusion Transformers

Before we dive into the specifics of these architectures, let us recall from the introduction that an image is simply
a vector x € RCmaeeXHXW = Here (Cfa0e denotes the number of channels (an RGB image typically would have
Cinput = 3 color channels), and H and W respectively denote the height and width of the image in pixels. One
particularly prominent architectural class are so-called diffusion transformers (DiTs), and their variants, which use

the attention mechanism to construct the network [35, 20, 18]. There are different flavors of diffusion transformers.

41

6.1 Neural Network Architectures

We explain here a generic design, and note though that specific instantiations of DiTs might differ depending on
model and application. For the remainder of this section, we will use d to denote the hidden dimension, L to
denote the number of transformer layers, and h to denote the number of heads per layer. Diffusion transformers
are based on vision transformers (ViTs), whose main idea is essentially to divide up an image into patches, embed
the patches to obtain a sequence of tokens, and process the resulting tokens via standard attention [6]. A final
depatchification operation is applied at the end to recover an image of the correct shape. The initial patchification

operation is simply a restructuring of the image tensor x € RE*HxW.
Patchify(z) € RN*¢’

where ¢/ = CP% N = (H/P) - (W/P) for P the patch size. Next, we apply a linear transformation to the output
giving us the final patch embedding

PatchEmb(z) = Patchify(z)W € RYV*4

where W € RE %4 is a learnable weight matrix. The inputs to the diffusion transformer are then the time embedding,

the prompt embedding, and the patchified image tensor given by (see Section 6.1.1):

t = TimeEmb(t) € R?
§ = PromptEmb(y) € RS*4
Fo = PatchEmb(z) € RV >4

Note that all elements have now the desired hidden dimension of the transformer. The diffusion transformer then

iteratively updates Z; via for ¢ = 0,--- , L — 1 via transformer layers in a DitBlock (see Remark 28 for details):
#i41 = DiTBlock(Z;,1,7) € RV*? (i=0,...,L —1). (70)

where NN is the number of layers. Finally, a final operation applies a depatchification operation which maps the

DiT output back to the desired output shape:
u = Depatchify (ZyW) € REXHEXW

where W € R%*", The final tensor u then serves as the output of the model and the predicted velocity uf (x|y).

Remark 28 (DiT Block)

For completeness, we present a brief mathematical description of a single DiT layer. While we attempt to
include enough detail to allow for a general understanding of the DiT model family, we remind the reader
that these choose to emphasize key algorithmic choices rather than architectural details, and refer the reader
elsewhere for guidance on current best practices and conventions. Now, let € RY*? denote the current
sequence of patch tokens (here z = 7;), and let y € R¥*¢ denote the embedded guiding variable (here y = 7).
Then, a typical DiT block updates x using (i) self-attention on patches, (ii) cross-attention to the prompt, and

(iii) time conditioning via adaptive normalization (AdaLN).

42

6.1 Neural Network Architectures

Scaled Dot Product Attention. Given queries Q € RV* keys K € RM*9 and values V € RM*dn,

T

K
Attn(Q, K, V) = softmax(Q

V c RNth,
Jﬁ)

where the softmax is applied row-wise.

Multi-Head Attention. Let i denote the number of heads and d;, = % the per-head dimension. For each head
h € {1,...,Nheads }, learn projection matrices Wéh), I((h), W‘(,h) € RF¥*dn Define

heady, (z,z) = Attn(xWéh), ZW[((h), zW‘(/h)),
where the source sequence z is either
z=ux (self-attention on patches), z =1y (cross-attention to the prompt).
Concatenate heads and apply an output projection Wo € R4*¢:

MultiHeadattention(x, z) = Concat (head1 (x,2),...,heady(x, z)) Wo e RVN*4,

Time Conditioning via Adaptive Normalization. Let € R? be the timestep embedding. A standard choice
in DiTs is to use ¢ to produce per-channel scale/shift parameters that modulate normalized activations [21].
Concretely, let g : R? — R™ be an MLP and set

(v, 8) = g(2),

where v, 3 € R? (or, depending on the implementation, separate (-, 3) pairs for different sub-layers such as
attention and MLP). Given a token matrix z € RV*? and a normalization operator Norm(-) (e.g. LayerNorm),

define the modulated normalization
AdaNorm;(z) = (1++) ® Norm(H) + B,

where ® denotes elementwise multiplication with broadcasting over the token dimension.

Putting It Together. The combined operation, and thus the DitBlock, is given by.

T < 2 + gserf(t) © MultiHeadattention(AdaNormg(z), AdaNormg(z))
T 4 T + goross(t)MultiHeadattention(AdaNormy(z), y)
&+ x + gurp (f)MLP(AdaNormg(z)),

where the MLP is a position-wise feed-forward network, and the g... are learnable gating parameters. The
output z € RV*4 becomes the next-layer patch-token sequence (in our notation, #;;1). Finally, we note that
class-conditioned DiT’s, such as the one implemented in the lab, are typically simpler and eschew the cross

attention layer in favor of a time and class-based AdaNorm conditioning.

43

6.2 Working in Latent Space: (Variational) Autoencoders

6.1.3 U-Net

The U-Net architecture [27] is a specific type of convolutional neural network. Originally designed for image
segmentation, its crucial feature is that both its input and its output have the shape of images (possibly with a
different number of channels). This makes it ideal for parameterizing a vector field = — uf(z|y), as for fixed y,t
its input has the shape of an image and its output does, too. Accordingly, U-Nets have seen widespread use across
much of the early literature on diffusion models [9, 12, 4]. A U-Net consists of a series of encoders &;, and a
corresponding sequence of decoders D;, along with a latent processing block in between, which we shall refer to
as a midcoder.® For sake of example, let us walk through the path taken by an image x; € R3*256%256 (we have
taken (Cinput, H, W) = (3,256, 256)) as it is processed by the U-Net:

ZimPut ¢ [R3X256%256 Input to the U-Net.

x%atent =M (x}satent) c R512 X32x32

tput
2V = D

>
glatent — g(ginputy ¢ ROI2X32x32 Pags through encoders to obtain latent.

» Pass latent through midcoder.

>

iatent) c RS X256 X256

(x Pass through decoders to obtain output.

Notice that as the input passes through the encoders, the number of channels in its representation increases, while
the height and width of the images are decreased. Both the encoder and the decoder usually consist of a series
of convolutional layers (with activation functions, pooling operations, etc. in between). Not shown above are two

points: First, the input xit“put € R3%256x256

is often fed into an initial pre-encoding block to increase the number
of channels before being fed into the first encoder block. Second, the encoders and decoders are often connected
by residual connections. The complete picture is shown in Figure 14. At a high level, most U-Nets involve some
variant of what is described above. However, certain of the design choices described above may well differ from
various implementations in practice. In particular, we opt above for a purely-convolutional architecture whereas it
is common to include attention layers as well throughout the encoders and decoders. The U-Net derives its name

from the “U-like shape formed by its encoders and decoders (see Figure 14).

6.2 Working in Latent Space: (Variational) Autoencoders

Thus far, we have operated in the data space R?. However, the cost of modeling directly within such a space quickly
becomes prohibitively expensive as one scales to increasingly higher resolution images. For example, a 1024 x 1024
image with three RGB color channels corresponds to a total dimension of d = H-W -3 ~ 3x10°! As you can imagine,
training over such a space quickly becomes infeasible. Unlike image classification, whose low-dimensional outputs
allow for narrowing convolutional stacks, our flow-based modeling approach requires that our output uf(z) € R?
be just as large as our input. The important question thus becomes: How can we model high-dimensional images

within a reasonable memory and computation budget?

6.2.1 Standard Autoencoders

A natural answer to this question lies in compression: perhaps the actual space of images, for example, lies near a

much lower-dimensional manifold of the high dimensional image space. More concretely, and not unlike the U-Net

3Midcoder is a completely non-standard term used here to refer to the bottom-most part of the U-Net stack, and in analogy with
the encoder and decoder.

44

6.2 Working in Latent Space: (Variational) Autoencoders

Tt t Yy U?($t|y)

q | h
Conv + BatchNorm +
SiLU . ' '
. : Encoder I FREEEELH] Decoder
Residual v : ' .

Y : :
Layer E e | Res:idual Conniection ﬁ
Y : ' :

L : l ; ; ’
Conv + BatchNorm + : ' '
SiEU . Encoder T A Decoder
Y Y -
N— i

Resid:ual Connecllion(s)

>
»

Encoder «--- L ----------- 1 ------- % Decoder
Encoder : : :

Residual Layer |« - - -« . ; : Y
. Residual Conriection
Residual Layer |« 1--- - : n D

: v '
v

Figure 14: A simplified U-Net architecture used in last year’s lab three.

described in the previous section and whose notation we borrow, we might consider an encoder p, : R? — RF,
together with some decoder py : R¥ — R?, which together map raw images 2 € R? to and from latents z € R”,
respectively. The dimension k is typically chosen to be much smaller than d. For images, in which, for example,

% X %. Together, g and g

d =3 x 1024 x 1024, it is not uncommon to downsample to obtain e.g., k = 3 X
are referred to as an autoencoder. Ideally, ;14 and pg are chosen so as to achieve high reconstruction quality, or
in other words, so that pg(ue(x)) resembles = on average. Accordingly, autoencoders are usually trained with the

reconstruction loss
£Recon(¢79) :wavpd-dm [||M0(M¢(x)) - x”Q] .

Amenability to Generative Modeling. Recall that our eventual goal is to train a generative model in the latent
space, and targeting the latent distribution piatent(2) given by z = (), £ ~ pdata. A generative model for pyasa ()
is then realized by passing the output of our latent generative model through the decoder pgy. A subtle issue arises
with autoencoders as we have currently formulated them in that we have little to no control over pjatent (2), and thus
essentially no guarantee that piatent(2) is even well-behaved enough to be amenable to training such a generative
model (i.e., nice, simple, Gaussian-like). To allow for more explicit regularization of the latent distribution, we will

now recast the concept of autoencoder in a more general probabilistic framework.

6.2.2 Variational Autoencoders

A variational autoencoder (VAE) is obtained from our (deterministic) standard autoencoder formulation by re-

laxing the constraint that the encoder and decoder are deterministic functions. In particular, let us consider an

45

6.2 Working in Latent Space: (Variational) Autoencoders

encoder gy (z|x) with parameters ¢, and a decoder pg(z|z) with parameters §. The most common choice is to take

4o (2m) = N (25 pg(x),05(x) k), po(x]2) = N(2; po(2), 05(2)1a) (71)

where pg(z) € RF, ai(x) € Rxo, po(2) € R, and 02(z) € Rsq are parameterized as neural networks. To encode

or decode a variable, we sample

z ~ qg(-|z) (encode)
z ~po(-|z) (decode)

Finally, we note that when o,(z) = 0 and og(x) = 0 always, we recover a standard autoencoder. Let us examine

what a reconstruction loss looks like. A natural objective is the following:

Lyvag-Recon(®,0) = — Epnpyora (@), 2vgs (2) 108 Do (2]2)] (72)

Note the two changes: Instead of a deterministic encoding, we now sample z ~ g4 (z|z). Further, we now take the
negative log-likelihood of x under decoding, i.e. the loss effectively asks: how likely would our original data point x
be if we encoded and decoded it - and we take all possible decodings/encodings into account as things have become

random now. For the Gaussian case, this reconstruction loss becomes:
1 2 d 2
EVAE—Recon(¢v 0) :]Exwpdata(x),zwq¢(z|w) 252 Hl’ — Mo (Z)” + ; log Jp (Z) + const (73)
o5 (x) 2

where we used the density of the normal distribution (see Equation (92)) Hence, the VAE reconstruction loss
is not that different from the standard AE reconstruction loss, we simply have to take into account all possible
encodings z ~ ¢y (-|z). Further, we want the variance ¢3(z) to be minimal. Many implementations fix o} = o2
to a constant, which avoids pathological behavior and numerical stability when learning variances. Therefore, the
VAE reconstruction loss in this case then becomes basically the standard autoencoder reconstruction loss up to

stochasticity in the encoding and constants:

1
LyAE-Recon (9, 0) :ExNPdata(x),ZN%(Z\ac) T‘Q”x - Nﬁ(z)”z + const (74)

Let us now revisit our goal: We want to create an encoding of our data distribution pqata(x) such that after
mapping it into a latent space, the distribution becomes “nice” or easy-to-learn. For this purposes, let us now
introduce a prior distribution pio(2) over latents z. For our purposes, pprior = N (0, ;) almost always. The
prior distribution pprior effectively gives the “ideal” case of how the latent distribution should look like. A normal
distribution would be very easy to learn and this would certainly satisfy our goals to build a “trainable” latent

space. A natural way to enforce this is such that encoding distribution is close to the prior distribution

EVAE—Prior(Qb) :]wavpdata(w) [DKL(QQS("J:) || pprior)] (75)

where Dy, is the Kullback-Leibler (KL) divergence. The KL-divergence is a fundamental way of measuring how
different two probability distributions are. Explaining it in detail would go beyond the scope of this work but we
give a brief background in Remark 29 as a reminder for the reader. The loss Lyag-prior defined here now is very

intuitive: We want that the encoding distributions looks like a Gaussian distribution for any data point x. If we

46

6.2 Working in Latent Space: (Variational) Autoencoders

do this for all z, it is natural to expect that then our latent distribution will look a Gaussian as well.

Remark 29 (Background on KL-divergence)
For two probability densities ¢, p, the Kullback-Leibler divergence (KL-divergence) is defined as
q(x) 9(X)

Dicc(ala) | 2(@)) = [afa)log 5 = Exe [10g p(X)] .

The KL divergence is a standard measure of dissimilarity between distributions, and will be our choice to

replace D in ??7. In particular, the KL divergence satisfies the following useful properties:

v

Dxw(gq() || p(x))

07
Dxr(q(2) || p(z)) =0

& q=p (77)

i.e. it is always non-negative and it is zero if and only the two probability distributions coincide.

To define the loss function for a variational autoencoder, we can now combine both the reconstruction and the

prior loss with a parameter weight 5 > 0 to VAE training objective given by

Lyas(9,0) = LyAE-Recon (@, 8) + BLYAE-Prior(¢) (78)
= _E:rr~pdam(:v)72~q¢(ZIm) UOgPG(x | Z)] + ﬁEm~pdam(m) [DKL(qaﬁ("x)prrior)] (79)

where the first summand enforces that latent variables can be efficiently decoded back to data and the second
summand enforces that our latent distribution is close to being a Gaussian. The parameter 5 controls the strength

of each. To make this loss more specific, let us derive the KL divergence for the Gaussian case:

Example 30 (KL Divergence Between Isotropic Gaussians)
Let q(x) = N(a; g, 021a) and p(z) = N(z; pp, 0214) be isotropic Gaussians, with oy, 0;, € R%O, and where
x € R%. Then

L) o = ml? :
Dxi(q |l p) = 5 K Pl e e where K(a) = Zai —loga; — 1. (80)
[z =1

9p

The expression above is intuitive: If the mean and variances coincide, that then Dk, (q || p) = 0. Further, it
increases with the squared error ||pq — p,||? between the mean vectors. Finally, the function K(a) has a unique

minimum at o = 1 so that Dxkr,(¢ || p) is minimized when o, = o).

Proof. We do the proof for d = 1 (proof is analogous for d > 1 by summing up each dimension). Given the

density of the normal distribution, we know that (see Equation (92)):

1 1
sl —mal®, logp(e) = 3 log(2n2) — 1z — |

1
log g(x) = =5 log(2mo?) —
a

2
2crp

47

6.2 Working in Latent Space: (Variational) Autoencoders

Then

1. o2 1 1
log £+ E]Eq [Hx - :“p||2] - T.,QEQ [”x - MQHQ] . (81)

Dx(q||lp) = Eznyg[log q(z) — logp(z)] = 5108
q p q

For x ~ N (g, 021) we have
Eqy[llz — pgll?] = tr(o21) = o2,

Combining this with the fact that © — p, = (z — pq) + (g — 1tp), and Ey[z — pg] = 0, we obtain

Eq[Hm - ,“p||2] = Eq[”m - NqHQ] + [|pg — /~L10||2 = 02 + [l1g — Nsz'

Plugging these into Equation (81) yields (80). O

Let us now assume a Gaussian shape of the encoder

1

Lvag-prior(®) ZEonpaa @) [Prr(gs () [| N0, I))] = E | 5K (05(2)) + %H%(@HQ (82)

This loss is intuitive: The mean p4(z) is penalized for being different from zero and the variance penalized for
being different from 1. As a total loss for the VAE, we obtain

Lyar(¢,0) (83)
= LVAE-Recon (9, 0) + BLVAE-Prior(¢) (84)
—-F 1 2 11 2 EIC 2 B 2 85
= Eanpaaca(@),2vag(2]2) 202 () lz — po(2)]|" + 5 ogoy(z) + 5 (o3(x) + 5 |12 () || (85)

recon. error decoder confidence make latent variance=1 make latent mean=0

The 4 terms of the above loss function are very intuitive: The first term is simply a reconstruction error. The
second error describes the decoder’s uncertainty: smaller variance makes the decoder more “confident” but also
penalizes reconstruction errors more strongly. Further, we want to make the latent variance 1 and the mean to be

0 - to enforce that the distribution in latent is close to being Gaussian.

Training a VAE. It remains to discuss how we would minimize the VAE loss Lyag(¢,). The problem with the
loss is that so far, the distribution we take the expected value over (gy(z|z)) still depends on the parameter ¢.

However, we can apply the so-called reparameterization trick to rewrite it. Specifically, for

qs(2lz) = N(2; (), 03 ())
we can obtain samples via

e~ N(0,I;), z=upsx)+os(x)e = z~qu(-|z)

48

6.2 Working in Latent Space: (Variational) Autoencoders

Note that in this equation, the only source of noise/stochasticity is from e whose distribution is independent of ¢.

Therefore, we can rewrite the loss as:

1 1
Lan(6.0) =Earepyp(e) o (0,10 [an ~ (o) + as (D)1 + 3108 aB) + 5K (03) + S Ino(o|P

After reparameterization, the randomness comes only from e ~ N(0, I;), whose distribution does not depend on ¢.

Therefore, we can minimize this loss with the standard tools of deep learning. To simplify things even further, we

2

can set 03(z) = 02 constant everywhere again and obtain:

1
CAR(000) ~Eurpito) oy | o — o) + 0o + 5K (03() + 5 ool

In Algorithm 6, we summarize the training procedure of the VAE.

Algorithm 6 $-VAE Training Procedure (Gaussian decoder with fixed variance pp(z|2) = N (x; po(2), 0%14))

Require: Dataset of samples & ~ pdata, encoder networks (u4(x),log o3 (x)), decoder network p4(z), latent dim k,
constants 3 >0, 02 > 0
1: for each mini-batch {z;}2 | do
Encode each z;: ; « pgy(z;), logo? « log O’i(ﬂfi)
Sample noise €; ~ N (0, I)
Reparameterize: z; < u; + o; © ¢€; (where o; = exp(% log o?))
Decode mean: &; < ug(z;)
Reconstruction loss:

1< 1
Lrecon E ; ﬁ ||xz - i‘zHQ

7. KL loss to the prior pprior(2) = N(0, Iy):

8 Total loss: L < Lyiecon + B LK1,
9: Update (¢,0) < grad update(L)
10: end for

Practical remarks. The construction we developed here show the principles of autoencoder design. Of course,
in practice, people might add more loss terms or other constraints. Therefore, we finally add a practical remarks

about autoencoders:

1. Choosing 3 (and KL warm-up). Large /3 enforces latents closer to the prior but can hurt reconstructions
and may trigger posterior collapse (the encoder ignores x and outputs g4(z|z) ~ N(0,1;)). A common
stabilization is KL warm-up: start with § = 0 and gradually increase it to a target value over the first

epochs. However, in all modern autoencoders, the £ value is very small, i.e. 8 << 1.

2. Decoder variance. Learning a Gaussian decoder variance 03 can be numerically delicate and may lead to

49

6.3 Case Study: Stable Diffusion 3 and Meta Movie Gen

degenerate solutions unless regularized. For stability, many implementations fix pg(x|2) = N (x; pe(2), 0%14)

with constant o2, which makes the reconstruction term proportional to mean-squared error (up to constants).

3. Reconstruction losses beyond pixel MSE. For images, a pixelwise Gaussian likelihood (mean squared error)
often yields overly smooth reconstructions. In practice, people add perceptual losses (feature-space losses

using a pretrained network) to improve sharpness and semantic fidelity.

4. Adversarial and hybrid objectives. To further improve visual realism, one can combine the VAE objective
with an adversarial loss (VAE-GAN style), using a discriminator on decoded samples. This typically sharpens

outputs but introduces additional optimization instability and extra hyperparameters.

Remark 31 (Working in Latent Space)

To train a diffusion model, we simply work in latent space now. In this case, one first encodes the training
dataset in the latent space via an VAE (usually we simply take the mean ug(z) of each data point in latent
space), and then training the flow or diffusion model in the latent space. Sampling is performed by first
sampling in the latent space using the trained flow or diffusion model, and then decoding of the output via
the decoder. Intuitively, a well-trained autoencoder can be thought of as filtering out semantically meaningless
details, allowing the generative model to “focus” on important, perceptually relevant features [26]. By now,
nearly all state-of-the-art approaches to image and video generation involve training a flow or diffusion model
in the latent space of an autoencoder - so called latent diffusion models [26, 34]. However, it is important
to note: one also needs to train the autoencoder before training the diffusion models. Crucially, performance
now depends also on how good the autoencoder compresses images into latent space and recovers aesthetically

pleasing images.

6.3 Case Study: Stable Diffusion 3 and Meta Movie Gen

We conclude this section by briefly examining two large-scale generative models: Stable Diffusion 8 for image
generation and Meta’s Movie Gen Video for video generation [7, 23]. As you will see, these models use the
techniques we have described in this work along with additional architectural enhancements to both scale and

accommodate richly structured conditioning modalities, such as text-based input.

6.3.1 Stable Diffusion 3

Stable Diffusion is a series of state-of-the-art image generation models. These models were among the first to use
large-scale latent diffusion models for image generation. If you have not done so, we highly recommend testing it

for yourself online (https://stability.ai/news/stable-diffusion-3).

Stable Diffusion 3 uses the same conditional flow matching objective that we study in this work (see Algo-
rithm 4).* As outlined in their paper, they extensively tested various flow and diffusion alternatives and found
flow matching to perform best. For training, it uses classifier-free guidance training (with dropping class labels)

as outlined above. Further, Stable Diffusion 3 follows the approach outlined in Section 6.1 by training within the

4In their work, they use a different convention to condition on the noise. But this is only notation and the algorithm is the same.

50

https://stability.ai/news/stable-diffusion-3

6.3 Case Study: Stable Diffusion 3 and Meta Movie Gen

}E

CLIP-G/14 N CLIPLA4 [TSXXL)

TT 4 77 tokens
* 4006
channel

(
- Positional
CHF D T (oo |

|

1

o9

Pooled

MM-DiT-Block 1)]
I I
MM-DiT-Block 2)]

Sinusoidal Encoding

A ?_'

-

MM-DiT-Black d)

@0 ¢

Unpatching

Figure 15: The architecture of the multi-modal diffusion transformer (MM-DiT) proposed in [7]. Figure also taken
from [7].

latent space of a pre-trained autoencoder. Training a good autoencoder was a big contribution of the first stable

diffusion papers.

To enhance text conditioning, Stable Diffusion 3 makes use of both 3 different types of text embeddings (including
CLIP embeddings as well as the sequential outputs produced by a pretrained instance of the encoder of Google’s
T5-XXL [25], and similar to approaches taken in [2, 28]). Whereas CLIP embeddings provide a coarse, overarching
embedding of the input text, the T5 embeddings provide a more granular level of context, allowing for the possibility
of the model attending to particular elements of the conditioning text. To accommodate these sequential context
embeddings, the authors then propose to extend the diffusion transformer to attend not just to patches of the
image, but to the text embeddings as well, thereby extending the conditioning capacity from the class-based
scheme originally proposed for DiT to sequential context embeddings. This proposed modified DiT is referred to as
a multi-modal DiT (MM-DiT), and is depicted in Figure 15. Their final, largest model has 8 billion parameters.
For sampling, they use 50 steps (i.e. they have to evaluate the network 50 times) using a Euler simulation scheme

and a classifier-free guidance weight between 2.0-5.0.

6.3.2 Meta Movie Gen Video

Next, we discuss Meta’s video generator, Movie Gen Video (https://ai.meta.com/research/movie-gen/). As the

data are not images but videos, the data x lie in the space RT*C*H>W where T represents the new temporal

51

https://ai.meta.com/research/movie-gen/

6.3 Case Study: Stable Diffusion 3 and Meta Movie Gen

dimension (i.e. the number of frames). As we shall see, many of the design choices made in this video setting can
be seen as adapting existing techniques (e.g., autoencoders, diffusion transformers, etc.) from the image setting to

handle this extra temporal dimension.

Movie Gen Video utilizes the conditional flow matching objective with the same straight line schedulers a; =
t,o. = 1 —t. Like Stable Diffusion 3, Movie Gen Video also operates in the latent space of frozen, pretrained
autoencoder. Note that the autoencoder to reduce memory consumption is even more important for videos than for
images - which is why most video generators right now are pretty limited in the length of the video they generate.
Specifically, the authors propose to handle the added time dimension by introducing a temporal autoencoder
(TAE) which maps a raw video z} € RT *3XHxW {5 g latent z, € RT*CXHXW with TT/ = % = % = 8 [23].
To accomodate long videos, a temporal tiling procedure is proposed by which the video is chopped up into pieces,
each piece is encoder separately, and the latents are sticthed together [23]. The model itself - that is, uf(z;) - is
given by a DiT-like backbone in which z; is patchified along the time and space dimensions. The image patches
are then passed through a transformer employing both self-attention among the image patches, and cross-attention
with language model embeddings, similar to the MM-DiT employed by Stable Diffusion 3. For text conditioning,
Movie Gen Video employs three types of text embeddings: UL2 embeddings, for granular, text-based reasoning [33],
ByT5 embeddings, for attending to character-level details (for e.g., prompts explicitly requesting specific text to
be present) [36], and MetaCLIP embeddings, trained in a shared text-image embedding space [14, 23]. Their final,
largest model has 30 billion parameters. For a significantly more detailed and expansive treatment, we encourage

the reader to check out the Movie Gen technical report itself [23].

52

7 Discrete Diffusion Models: Building Language Models with Diffusion

In previous sections, we explored flow and diffusion models as generative models over Euclidean space R? that allow
us to generate data points represented by vectors z € R?. However, not all data comes in vectors. Rather, often
data comes from a discrete set S. Most importantly, language consists of a sequence of discrete characters that we
want to model. How could we apply flow and diffusion models to such data types? It turns out that the principles
that we have learned in previous sections extend to such data types as well. The resulting models are called
discrete diffusion models in the machine learning literature. However, it is important to keep in mind that there is
no mathematical diffusion process (SDEs don’t exist in discrete state spaces). Instead of having ODEs/SDEs, we
use continuous-time Markov chains (CTMCs). In the following, we will explain CTMC models (see Section 7.1)

and how to learn them (see Section 7.2).

7.1 Continuous-Time Markov chain (CTMC) models

In this section, we explain continuous-time Markov chains (CTMCs). You can think of CTMCs as a discrete
analogue of SDEs that we can use to build neural network models that generate discrete states.

Let us begin by characterizing our state space S. Let V = {v1, - ,vy} be our vocabulary. The state space
is given by S = V¥ where d € N is sequence length and V € N is the vocabulary size. For language, {vy, -+, vy}
could enumerate our alphabet or a set of discrete tokens and S would represent the set of sequences (or sentences)
of length d. For DNA, {vy,--- ,vy} could be all 4 DNA bases and S all DNA sequences of length d.

Next, let X; be a stochastic process on S, i.e. a random trajectory X : [0,1] — S, — X; in S. We require X;
to be a Markov process, i.e. a process that has no memory. Specifically, this means that the following condition
holds

p(Xt+h|Xt7Xt17' s ,th) = p(Xt+h‘Xt) (fOI' all 0 < h70 S tl < tg <0< tk < t)
—_——

prob. of future given present and past prob. of future given present

In other words, the probabilities of future events only depend on the present - the past has no relevance for the
future anymore. Note that ODE/SDEs - while not on discrete state spaces - are also Markov processes. Here, X, is
on a discrete space and therefore is called a Markov chain, specifically a Continuous-time Markov chain (CTMC).
The quantity pyp¢(X¢1n|X¢) are the transition probabilities and they fully determine the CTMC. Therefore, when
we say CTMC, you can also just think of transition probabilities p;ip¢(Xi1n|X¢).

Next, let us derive the analogue of a vector field in the discrete setting. As we are in a discrete setting, we can
only jump (or switch) between states - we cannot go into a direction anymore like we did when specifying ODEs.
Therefore, we define a rate matrix Q;(y|z) that effectively summarizes the rate of jumping (or switching) from

state x € S to state y € S. Formally, a rate matrix @ is given by a bounded function (continuous in time)

Q:SxSx[0,]] =R, (z,u,t) — Qi(y|z) (86)

53

7.1 Continuous-Time Markov chain (CTMC) models

such that
(1) Outgoing rates ares positives: Q¢(y|z) >0 whenever x # y (87)
(2) Rate staying equals negative outgoing rate: Q¢(z|x) = — Z Q:(y|z) for all x (88)
y7#S

The two conditions are intuitive: The first condition says that the rate of switching from x to a different state
y # x can only be non-negative (not switching just corresponds to 0 - so it does not make to have a rate that is
smaller than that). The second condition that the rate Q:(z|x) of staying at = should cancel out with the rate of
leaving z - it is essentially a consistency condition saying that you have to either stay at = or leave (there is no
third option).

We can now define the analogue of a differential equation, i.e. a condition on a CTMC to “follow” the rate
matrix. The idea is basically that the distribution or evolution of X should follow the rate matrix ;. In other

words, we require that the transition probabilities fulfill

d

Ethrh\t(Xt-i-h =y| Xt =) =0 = Q:(ylx) forallz e s (89)

The left-hand side is the infinitesimal rate of change of the probability of switching from x to y. We impose the
condition that these probabilties should change as specified by the rate matrix. Let’s briefly check that it reasonable
to request these conditions, i.e. we simply set Q:(y|z) as in Equation (89), would it be a valid rate matrix? For
h = 0, the probability of switching from z to y # x is zero (as no time has passed). Therefore, we know that
the derivative must be non-negative and @Q;(y|x) > 0. This checks that the first condition in Equation (87) holds.

Further, we know that

d d d
; Qi(ylz) = ; @p(XHh =yl Xt = 2)jp=o = a ;p(Xt-‘rh =y|Xi = @) =0 :@(1 = p(Xpyn = 2| Xy = 7))
YFx YFx YFT

= = Qi(z[x)

This shows Equation (88). This checks that every CTMC has at least one rate matrix satisfying Equation (89).
But what if we go backwards - what if we specify ¢, is there a corresponding CTMC and if so, it is unique? This

is indeed the case.

Theorem 32 (CTMC existence and uniqueness)

For any rate matrix)¢, there is 77

Example 33 (Two-state CTMC with equal jump rates)
Let S = {a, b} and consider a time-homogeneous CTMC (X});>¢ that switches between both states at a constant
rate A > 0:

54

7.1 Continuous-Time Markov chain (CTMC) models

Then the transition probabilities over a time increment i > 0 are also constant in time ¢ and given by

p(Xepnh =alXe =a) p(Xegn=a|X;=0)\ 1 [l4e 2 122
1— 672)\h 1+ 672)\h :

2

p(Xe4n = b Xy =a) p(Xipn =0 Xy =b)
One can check by hand that Equation (89) holds, i.e. these transition probabilities indeed are the correct ones
for that rate matrix. In fact, these rates are very intuitive: The chain keeps flipping with an instantaneous rate

—2Mh captures how the memory of the initial state decays. As infinite time passes,

)

so the chain forgets where it started and is in a or b with probability 1/2. This convergence is faster the higher

A. The exponential term e
i.e. for h — oo, it holds that

e

—~

>

~—
/N
N[D=
N[D=

the rate A > 0 of switching.

Simulation of CTMC. Next, let us think about how one would go about simulating a trajectory of an ODE. Let
h > 0 be a step size and pi,jy be an initial distribution over S, e.g. pinjt = Unifg is the uniform distribution over

S. Then we can simulate it iteratively by setting X ~ pinix and setting

Xitn Npt—&-h\t("Xt)

Now, the issue is that we do not know p;yp¢(-|X¢) but we only know the rate matrix. However, by Equation (89),

we know that

Peinlt(Xern = Y| Xy =) = pypp(Xy = y| X = 2) + hQ4(y|x) + Re(h)

where Ry(h) is an error term that we can neglect for small h. Therefore, as long as h is small enough, we can

simply set
Pegnit(Xewn = Y| X =) = 1y=p + hQ:(y|T) =: Pryne(y]7)

One can check that p;p¢(y|7) is indeed a valid probability distribution for small A by the conditions we imposed

on the rate matrix. Therefore, we can approximately sample the next point via

Xirh ~ Pranpe(|2) = (ly=z + hQ:(y|7))yes (90)

As the above is just a discrete distribution, we can sample from it easily via standard methods.

CTMC model. Next, let us define how can we a parameterize a CTMC in a neural network. A CTMC model (or
discrete diffusion model) is given by an initial distribution pi,i; over S and a neural network QY with parameters

f such that for every input z € S the model returns a single column of the rate matrix

z = {Q7 (yl2)}yes

55

7.1 Continuous-Time Markov chain (CTMC) models

We want the model to return an entire column because we require it for simulation of the CTMC (Equation (90)),
i.e. sampling the next state.

One complication with the above model is that the space S can be very large. In particular, |S| = V¢ where V
is our vocabulary size and d is the sequence length. This exponential growth makes it basically impossible to store
an entire column of the rate matrix in memory - {QY(y|x)},cs is impossible to store in memory. Therefore, we have
to constrain the model. Specifically, almost all CTMC models are factorized. The idea of a factorized model is that
we only allow single tokens to be updated, we never update two tokens at the same time. Specifically, a factorized
CTMC model is given by a CTMC model Q¢ such that for all y = (y1,--- ,ya),z = (21, ,24) € S = V¥ it holds

Q%(y|x) =0 whenever y; # x; for more than one position i

We call all y that different from z in at most one token the neighbors N(x) of z. We can write such a factorized
CTMC model as

Q) (v, 1z) -+ QY (vy,1]z)
= Q) (l2)}yen) =
Q) (v1,dlz) - QY (vv,d|z)

where QY(v;, j|z) now gives the rate of going from z = (x1,- -+ ,z4) to the neighbor of = that we obtain swapping
out the j-the element, i.e. = (21, -+ ,xj,,v;,j41, -+ ,2q). Note that the above matrix has shape V' x d - this
size increases linearly in the dimension and not exponentially. Therefore, factorized CTMC models are very much

tractable even for large sequence lengths d.

Simulating a CTMC model. To sample from a CTMC model, we sample Xy ~ pinis and perform an iteration
where we sample the next state according to Equation (90). We present an algorithm in Algorithm 7. As shown
there, for factorized CTMC models, we can perform a trick where we update each token independently (i.e. we

just treat the rate matrix as per token). This is explained in Remark 34.

Remark 34 (Independent updates per token for factorized CTMCs)

We briefly justify why Algorithm 7 can update each token independently. The main intuition is single token
updates have probability of order h, while any change in two token positions within a short step [t,t + h]
requires two distinct single-token jumps, and thus has probability only of order h%. Fix the current sequence
r € V4 at time t. Let

d
M) = Y Qi) =Y Y gu]w)

y#£T Jj=1lvev\{z;}

be the total outgoing rate (sum of all single-token rates). Standard CTMC calculus gives, for small h,
P(no jump in [t,t + h] | X; = 2) = 1 — Ag(x)h + O(h?),

hence
P(at least one jump in [t,t + h] | X; = 2) = Ay(z)h + O(R?).

Moreover, to first order in h, the probability that the first jump is the single-token update z — (=) equals

56

7.2 Learning CTMCs

its rate times h:
P(Xpyn =207 | Xy =) = ¢j4(v |) h+ O(B?).

Now take any y that differs from z in two positions. Under a factorized generator, there is no direct
transition — y in one jump, so reaching y within [¢, ¢ 4+ h| requires at least two jumps. But already one jump

has probability O(h), so two jumps has probability
P(> 2 jumps in [t,t + h] | X; = z) = O(h?),

and therefore
P(Xin =vy | X; =) = O(h?) for all y differing from x in > 2 tokens.

Thus, ignoring multi-token updates incurs only an O(h?) error per step, which justifies the independent per-

token update rule to first order in h.

Algorithm 7 Sampling from a Factorized CTMC Model (Euler / 7-leaping)

Require: Rate network QY (factorized), initial distribution piyi;, number of steps n
1: Set t <0
2: Set step size h < %
3: Draw a sample X ~ pinit, where Xo = (Xél), . 7Xéd)) %
4: fori=1,....,ndo
5. Compute factorized jump rates {g;(v)}j=1.4, vev < QI(- | X;)
6: forj=1,...,d (in parallel) do
7
8

T Xt(j) {current token at position j}

Define the per-position Euler transition probabilities p;+(- | Xt(j) = x) by

hqj (U)7 v 7é z,
Pt 1t =91h 2 g0, v=u
v eV\{z}
9: Sample Xt(i)h ~ CATEGORICAL({Dj (v |) }vev)

10: end for

11: Sett<+t+h
12: end for

13: return X;

7.2 Learning CTMCs

We next discuss how to learn CTMC models. The principles are the same as for flow matching: (1) We construct
a probability path interpolating between noise and data. (2) We derive a conditional rate matrix

In this section, the data distribution pg,. is a distribution over S characterized by a probability mass function.
Namely, pdata : S — R>0,2 + pdata(2) With > ¢ pdata(2) = 1. We do not know pgasa but we access to samples
Z ~ Pdata during training in form of a data set. Our goal is to learn to generate samples z ~ pgata. S0 as you might

realize, this is no different from before.

57

7.2 Learning CTMCs

7.2.1 Conditional and Marginal Probability Path

We define §,(x) to be function such that 6,(z) = 0 if x # 2z and §,(2) = 1 if x = 2. A (discrete) conditional
probability path is given by set of distributions p;(x|z) for ,z € S and 0 < ¢ < 1 such that

Po(12) = pmit, p1(12) = 6.

A (discrete) marginal probability path is then given by

) =Y pr(x|2)paata(z)

z€S

The marginal probability path interpolates “noise” and data:

Po = Pinit; P1 = Pdata

Example 35 (Factorized mixture path (independent noising per token))
Let S = V¥ and let pinit(z) = H;i 1pl(fu)t (x;) be a initial distribution. Fix a schedule 0 < x; < 1. Define the
conditional path by

(z | 2) ﬁ [1— ky plmt(x]) + k¢ 0 (x])}

Equivalently, one can sample & ~ p.(- | z) by drawing i.i.d. masks and noise &; ~ pi(ﬁi)w then setting

mj ~ Bernoulli(l’it)v fj ~ plnlt
J;j:ijj—F(l_mj)gj’ j=1,....d

$:($17"‘,£Ed)

7.2.2 Conditional and Marginal Rate Matrix

Let Q7 (y|z) be a rate matrix for every data point z € S. Then we call it a conditional rate matrix if

Xo ~ pimit, X¢ CTMC of QF = X; ~pi(-]2)

Theorem 36 (Discrete marginalization trick)

The marginal rate matrix defined by

Qi(ylz) = > Qi (vl) PelTle)Pane(z) _ = Qi (ylz)pi(2lx)

z€S p() z€S

58

7.2 Learning CTMCs

fulfills the following condition:
Xo ~ pinit, Xy CTMCof Qr = Xy~py

In words, the CTMC of the marginal rate matrix converts noise to data.

Proposition 2 (Kolmogorov Forward Equation)

Xe~pe (05t<1)

if and only if

(@) = 3 Qulelny)

yes

Proof.

d d
gpt (l’) Z& ;gpt<x|z)pdata(z)

3 p el pansa(2)

z€S

= Z %pt ($|Z)pdata(z)

z€S

=3 | > @i Glypi(yl2) | passal2)

z€S |yeS
_ = (ol P Y12)Pdata (2)
—yezspt(y) ;Qt(I
:Zpt(y)Qt(x\Z/)

yes

The statement follows by the Kolmogorov Forward equation (KFE).

Example 37 (Conditional rate matrix for factorized mixture path)

59

7.2 Learning CTMCs

The factorized mixture path has a factorized conditional rate matrix given by

Qi (ylz) = (QF (vi, 4|25))v, 4

Qi (v, glay) = 7= (02, (09) = B, ()

0 if x; = 2z
/fgt 1 1fvi:zj,xj7ézj

1"% 0 if’t)i#Zj,.Tj#Zj

-1 ifvy=xj52; # %

Note that this is a very simple rate matrix: It only allows for jumps to 27 - i.e. if any token j is updated, it

must jump to the token value of the terminal data point z = (21, , z4) - and it only jumps to 27 if we are
not yet there.

Proof. We note that the factorized mixture path completely factorizes into independent components and so
does the suggested conditional rate matrix. Therefore, we can without loss of generality assume that d = 1
(just do the calculation per dimension). Then, we can derive:

d d

&Pt(ﬂz) =14 [(1 = Kt)Pinit () + K05 ()]

=F10.(T) — FtPinit ()

=1 ftﬁt (02(2) = [(1 — K¢)Pinie (x) + e84 (2)])
=1 ft,it (02 (z) = [(1 = Ke)pinis () + K:02 ()
L (3u(2) — mi(al2)

=) — T (el

:1; Q; (zly)pe(yl2) + Qf (z|2)pe(2]2)

= ;Qf(wly)pt(ylﬂ

7.2.3 Learning the Marginal Rate Matrix

Theorem 38 (Marginalization trick for factorized mixture path)

60

The marginal rate matrix of the factorized mixture path is factorized and has the form

Qt(ylr) = (Qe(vi, j|2))w, .5

Qu(wi 1) = T2 (paje(2 = vila) = b, (v0)

1

In particular, the marginal rate matrix is also factorized and can therefore be efficiently learnt.

The Discrete Flow Matching loss is given by

d

Lorm(0) = Eznpyara,tnUnifio 1j,e~pe (]2) Z —log pf|(zj]z)
j=1

In other words, the model is minimized the negative log-likelihood of teh

Algorithm 8 Training factorized CTMC Model (Discrete Diffusion)

Require: Dataset of sequences z ~ pgata With z = (z1,...,24) € V%
initial (noise) token marginals pl(mt on V; schedule ¢ € [0,1];
posterior network fy returning per-position logits over V; optimizer OPT
1: for each training iteration do
2 Sample a data point z ~ pgata
3: Sample time ¢ ~ Unif[0, 1] and compute k < k¢
4: Sample a noisy state x ~ py(- | z) (factorized mixture path):
5. for j=1,...,d (in parallel) do
6: Sample mask m; ~ Bernoulli(k)
7 Sample noise token &; ~ pl(fu)t
8 Set xj < mj z; + (1 —m;)§;
9: end for
10: <+ (T1,...,2q)
11: Predict terminal-token posteriors via logits from the network:

() « folz,t); = p%t(v | z); = Softmax(¢;)(v)
12: Discrete Flow Matching loss (token-wise NLL of z):

d
Lorm(0) Z [10gp1|t zj | x);]

j=1

13: Update parameters: 6 < OPT.STEP (VgﬁDFM (0))
14: end for

8 References

[1] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. “Stochastic interpolants: A unifying frame-
work for flows and diffusions”. In: arXiv preprint arXiw:2303.08797 (2023).

61

2]

3]
4]

[5]

[6]

7]

18]
19]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]

[21]

Yogesh Balaji et al. eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers. 2023.
arXiv: 2211.01324 [cs.CV]. URL: https://arxiv.org/abs/2211.01324.

Earl A Coddington, Norman Levinson, and T Teichmann. Theory of ordinary differential equations. 1956.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis. 2021. arXiv: 2105.05233
[cs.LG]. URL: https://arxiv.org/abs/2105.05233.

Alexey Dosovitskiy. “An image is worth 16x16 words: Transformers for image recognition at scale”. In: arXiv
preprint arXiv:2010.11929 (2020).

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
2021. arXiv: 2010.11929 [cs.CV]. URL: https://arxiv.org/abs/2010.11929.

Patrick Esser et al. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis. 2024. arXiv:
2403.03206 [cs.CV]. URL: https://arxiv.org/abs/2403.03206.

Lawrence C Evans. Partial differential equations. Vol. 19. American Mathematical Society, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”. In: Advances in neural

information processing systems 33 (2020), pp. 6840—-6851.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. 2022. arXiv: 2207.12598 [cs.LG]. URL:
https://arxiv.org/abs,/2207.12598.

Arieh Iserles. A first course in the numerical analysis of differential equations. Cambridge university press,
2009.

Alexia Jolicoeur-Martineau et al. “ Adversarial score matching and improved sampling for image generation”.
In: arXiv preprint arXiv:2009.05475 (2020).

Tero Karras et al. “Elucidating the design space of diffusion-based generative models”. In: Advances in Neural
Information Processing Systems 35 (2022), pp. 26565-26577.

Samuel Lavoie et al. Modeling Caption Diversity in Contrastive Vision-Language Pretraining. 2024. arXiv:
2405.00740 [cs.CV]. URL: https://arxiv.org/abs/2405.00740.

Yaron Lipman et al. “Flow matching for generative modeling”. In: arXiv preprint arXiw:2210.02747 (2022).
Yaron Lipman et al. “Flow Matching Guide and Code”. In: arXiv preprint arXiv:2412.06264 (2024).

Xingchao Liu, Chengyue Gong, and Qiang Liu. “Flow straight and fast: Learning to generate and transfer
data with rectified flow”. In: arXiv preprint arXiv:2209.05003 (2022).

Nanye Ma et al. “Sit: Exploring flow and diffusion-based generative models with scalable interpolant trans-
formers”. In: arXiv preprint arXiv:2401.08740 (2024).

Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. 2023. arXiv: 2212.09748
[cs.CV]. URL: https://arxiv.org/abs/2212.09748.

Ethan Perez et al. “Film: Visual reasoning with a general conditioning layer”. In: Proceedings of the AAAI

conference on artificial intelligence. Vol. 32. 1. 2018.

62

https://arxiv.org/abs/2211.01324
https://arxiv.org/abs/2211.01324
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2405.00740
https://arxiv.org/abs/2405.00740
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748

22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

31]

32]

[33]

[34]

[35]

[36]

Lawrence Perko. Differential equations and dynamical systems. Vol. 7. Springer Science & Business Media,
2013.

Adam Polyak et al. Movie Gen: A Cast of Media Foundation Models. 2024. arXiv: 2410.13720 [cs.CV]. URL:
https://arxiv.org/abs/2410.13720.

Alec Radford et al. Learning Transferable Visual Models From Natural Language Supervision. 2021. arXiv:
2103.00020 [cs.CV]. URL: https://arxiv.org/abs/2103.00020.

Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2023.
arXiv: 1910.10683 [cs.LG]. URL: https://arxiv.org/abs/1910.10683.

Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. 2022. arXiv: 2112.10752
[cs.CV]. URL: https://arxiv.org/abs/2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for biomedical image
segmentation”. In: Medical image computing and computer-assisted intervention-MICCAI 2015: 18th inter-
national conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer. 2015, pp. 234—
241.

Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding.
2022. arXiv: 2205.11487 [cs.CV]. URL: https://arxiv.org/abs/2205.11487.

Yang Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. 2021. arXiv:
2011.13456 [cs.LG]. URL: https://arxiv.org/abs/2011.13456.
Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: Interna-
tional Conference on Learning Representations (ICLR). 2021.

Yang Song et al. “Score-based generative modeling through stochastic differential equations”. In: arXiv
preprint arXiw:2011.13456 (2020).

Matthew Tancik et al. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional
Domains. 2020. arXiv: 2006.10739 [cs.CV]. URL: https://arxiv.org/abs/2006.10739.

Yi Tay et al. UL2: Unifying Language Learning Paradigms. 2023. arXiv: 2205.05131 [cs.CL]. URL: https:
//arxiv.org/abs/2205.05131.
Arash Vahdat, Karsten Kreis, and Jan Kautz. “Score-based generative modeling in latent space”. In: Advances

in neural information processing systems 34 (2021), pp. 11287-11302.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. URL: https://arxiv.org/
abs/1706.03762.

Linting Xue et al. ByT5: Towards a token-free future with pre-trained byte-to-byte models. 2022. arXiv: 2105.
13626 [cs.CL]. URL: https://arxiv.org/abs/2105.13626.

63

https://arxiv.org/abs/2410.13720
https://arxiv.org/abs/2410.13720
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2105.13626

A A Reminder on Probability Theory

We present a brief overview of basic concepts from probability theory. This section was partially taken from [16].

A.1 Random vectors

Consider data in the d-dimensional Euclidean space z = (z!,... ,xd) € R? with the standard Euclidean inner
product (z,y) = Zle r'y’ and norm |z|| = \/(x,2). We will consider random variables (RVs) X € R? with
continuous probability density function (PDF), defined as a continuous function px : RY — R>g providing event

A with probability

P(X e A= /Apx(x)dos, (91)

where [px(z)dz = 1. By convention, we omit the integration interval when integrating over the whole space
(J = fRd)' To keep notation concise, we will refer to the PDF px, of RV X, as simply p;. We will use the notation
X ~por X ~ p(X) to indicate that X is distributed according to p. One common PDF in generative modeling is

the d-dimensional isotropic Gaussian:

2
N(z;p, 0*I) = (2#02)_% exp <_||:c—u|2>) (92)

202

where 1 € R? and o € Ry stand for the mean and the standard deviation of the distribution, respectively.

The expectation of a RV is the constant vector closest to X in the least-squares sense:

E[X] = argegzin/m—zHZpX(x)dx = /xpx(x)dx. (93)

One useful tool to compute the expectation of functions of RVs is the law of the unconscious statistician:

E[f(X)] = / F(@)px (2)da. (94)

When necessary, we will indicate the random variables under expectation as Ex f(X).

A.2 Conditional densities and expectations

Given two random variables X,Y € RY, their joint PDF px y(z,y) has marginals /\/\

/px,y(m,y)dy = px(z) and /px,y(fv,y)dx =py(y). (95)

See Figure 16 for an illustration of the joint PDF of two RVs in R (d = 1). The ‘ ’
conditional PDF py |y describes the PDF of the random variable X when conditioned
on an event Y = y with density py (y) > 0:

px,y (T, y)

py (y) ’ (96)

px|y (zly) =
Figure 16: Joint PDF pxy
(in shades) and its marginals
px and py (in black lines).

Figure from [16]
64

A.2 Conditional densities and expectations

and similarly for the conditional PDF py|x. Bayes’ rule expresses the conditional
PDF pY\X with px‘y by

prixle) = D) (o7

for px(x) > 0.
The conditional expectation E[X|Y] is the best approximating function g.(Y') to X in the least-squares sense:

. 2 . 2
g = argmin [|1X - g(V)|*] = argmin [1o~ g(u)]*px.y (2. y)dady
g:Rd—Rd g:R4d—R4

= argmin/ U |z — g(y)||2pX|y(wy)dx] py (y)dy. (98)

g:RI—Rd

For y € R? such that py (y) > 0 the conditional expectation function is therefore

BLXIY =4 = 0.(0) = [apxiy(aly)ide, (%9)

where the second equality follows from taking the minimizer of the inner brackets in Equation (98) for Y = y,

similarly to Equation (93). Composing g, with the random variable Y, we get
E[X[Y] = g.(Y), (100)

which is a random variable in R?. Rather confusingly, both E[X|Y = y] and E [X|Y] are often called conditional
exzpectation, but these are different objects. In particular, E [X|Y = g] is a function R? — R¢, while E[X]|Y] is a
random variable assuming values in R%. To disambiguate these two terms, our discussions will employ the notations
introduced here.

The tower property is an useful property that helps simplify derivations involving conditional expectations of
two RVs X and Y:

EE[X|Y]] =E[X] (101)

Because E [X Y] is a RV, itself a function of the RV Y, the outer expectation computes the expectation of E [X|Y].

The tower property can be verified by using some of the definitions above:
BBV = [([atalias) prs
L //l‘px,y(l’, y)dady
) /xpx(x)dx =E[X].

Finally, consider a helpful property involving two RVs f(X,Y) and Y, where X and Y are two arbitrary RVs.
Then, by using the Law of the Unconscious Statistician with (99), we obtain the identity

E[f(X, Y)Y =] = / F(a)y (aly)de. (102)

65

B A Proof of the Fokker-Planck equation

In this section, we give here a self-contained proof of the Fokker-Planck equation which includes the continuity
equation as a special case (Theorem 11). We stress that this section is not necessary to understand the remain-
der of this document and is mathematically more advanced. If you desire to understand where the Fokker-Planck

equation comes from, then this section is for you.

Theorem 39 (Fokker-Planck Equation)
Let p; be a probability path with pg = pini¢ and let us consider the SDE

Xo ~ Pinit, dXy = w(Xy)dt + o dW;.

Then X; has distribution p; for all 0 <t <1 if and only if the Fokker-Planck equation holds:

2
O (x) = —div(prut)(z) + %Apt(x) forallz e R%,0<t<1, (103)

We start by showing that the Fokker-Planck is a necessary condition, i.e. if X; ~ p;, then the Fokker-Planck
equation is fulfilled. The trick for the proof is to use test functions f, i.e. functions f : R* — R that are infinitely
differentiable ("smooth") and are only non-zero within a bounded domain (compact support). We use the fact that

for arbitrary integrable functions g1, g : R? — R it holds that
g1(z) = go(x) for all z € R & /f(x)gl (x)dz = /f(x)gg(x)dx for all test functions f (104)

In other words, we can express the pointwise equality as equality of taking integrals. The useful thing about test
functions is that they are smooth, i.e. we can take gradients and higher-order derivatives. In particular, we can

use integration by parts for arbitrary test functions fi, fo:

/f1 (z) aii fo(x)dx = — / fa(x) Baxi fi(z)dz (105)

under the condition that f;, fo and their product f; - fo is integrable. By using this together with the definition of
the divergence and Laplacian (see Equation (22)), we get the identities:

/VflT(x)fg(x)dx =— /f1 (2)div(fo)(z)dz (fi : R = R, fo : RT —» RY) (106)
[h@sn@is = [p@anE (7R SR RS ER) (107)
Now let’s proceed to the proof. We use the stochastic update of SDE trajectories as in Equation (6):
Xivn =Xt + hu(Xe) + ot (Wign, — We) + hRe(h) (108)
Xy + hu(Xy) + oe (Wi, — W) (109)

where for now we simply ignore the error term R:(h) for readability as we will take h — 0 anyway. We can then

66

make the following calculation:

F(Xign) — f(Xy) 2 F(Xe + hu(Xe) + ot (Wign — Wi)) — f(X3)

(:Z)Vf(X)T (hu(Xy) + 0(Wign — Wi)))

L (hut(Xt) + 0i(Wign = W) V2F(X0) (hug(Xy) + 00(Wen — W2)))

@hv F(X)Tus(X) + 0oV F(X)T (Wi — W)

+ EhQut(Xt)TVQf(Xt)ut(Xt) + hUtut(Xt)TVQf(Xt)(Wt+h — Wt)+
+ %Uf(WtJrh — W)V (X)W — We)

where in (i) we used a 2nd Taylor approximation of f around X; and in (ii) we used the fact that the Hessian V2 f
is a symmetric matrix. Note that E[W;,, — W;| Xy = 0 and Wy, — Wi| Xy ~ N (0, hly). Therefore

Elf(Xesn) — f(Xe)|[X]

1 h
:th(Xt)TUt(Xt) + §h2ut(Xt)TV2f(Xt)ut(Xt) + 7U?E€t,v_/\/’(07]d)[G?VQf(Xt)Et]

2

DRV (X0 T (X0) + 5% (X097 (X Jue(X0) + %0? trace(V2f(X0))

W th(Xt) up(Xt) + %h2ut(Xt)TV2f(Xt)Ut(Xt) t 50 TAf(Xy)

where in (i) we used the fact that Ee, n0,1,) [/ Ae;] = trace(A) and in (ii) we used the definition of the Laplacian
and the Hessian matrix. With this, we get that

DELf(X1)]
= lim %]E[F(Xepn) — F(X0)]
= lim %E[meﬁm — F(X0)1X4]]

—E{jim - (wum)+ G (E)TVR (X (X) + 507 (Xt))
=E[V f(X1)Tur(Xy) + atAf(Xt)]
@) / V£ (@) Ty (2)pe () da + / 50t A (@)pe(0)da
D [antun @+ [3025
/ fla (div(uepy) (z)+;U?Apt(x)> d

where in (i) we used the assumption that p; as the distribution of X; and in (ii) we used Equation (106) and

Equation (107). Note that to use this, we require integrability of the product p;(x)u;(x), i.e. such that

[@@ <

67

Note that this condition almost always holds in machine learning (bounded data and functions because of numerical
precision limits). Therefore, it holds that

2

OE[f(Xy)] /f (div(prus)(x) + OQtApt(a:)) dr (forall fand 0<t<1) (110)
@ at/f x)pe(z)dx —/f (div(pyus)(x) + prdx)) dr (forall fand 0<t<1) (111)

@ /f)Oepe (x)dx —/f (div(psus)(x) + ?Apda:)) dr (forall fand0<t<1) (112)

o2
@ opi(x) = — div(peur)(z) + 2 T ap(a) (forallw eRLO<E<1) (113)
where in (i) we used the assumption that X; ~ p, in (ii) we swapped the derivative with the integral and (iii) we

used Equation (104) . This completes the proof that the Fokker-Planck equation is a necessary condition.

Finally, we explain why it is also a sufficient condition. The Fokker-Planck equation is a partial differential
equation (PDE). More specifically, it is a so-called parabolic partial differential equation. Similar to Theorem 3,
such differential equations have a unique solution given fixed initial conditions (see e.g. [8, Chapter 7]). Now, if
Equation (103) holds for p;, we just shown above that it must also hold for true distribution ¢; of X; (i.e. X; ~ ¢4)
- in other words, both p; and ¢; are solutions to the parabolic PDE. Further, we know that the initial conditions
are the same, i.e. pgp = qo = pPinit Dy construction of an interpolating probability path. Hence, by uniqueness of the
solution of the differential equation, we know that p; = ¢, for all 0 < ¢ < 1 - which means X; ~ ¢; = p; and which

is what we wanted to show.

68

	Introduction
	Overview
	Course Structure
	Generative Modeling As Sampling

	Flow and Diffusion Models
	Flow Models
	Diffusion Models

	Flow Matching
	Conditional and Marginal Probability Path
	Conditional and Marginal Vector Fields
	Learning the Marginal Vector Field

	Score Functions and Score Matching
	Conditional and Marginal Score Functions
	Sampling with SDEs
	Score Matching

	Guidance: How To Condition on a Prompt
	Vanilla Guidance
	Classifer-Free Guidance

	Building Large-Scale Image or Video Generators
	Neural Network Architectures
	Working in Latent Space: (Variational) Autoencoders
	Case Study: Stable Diffusion 3 and Meta Movie Gen

	Discrete Diffusion Models: Building Language Models with Diffusion
	Continuous-Time Markov chain (CTMC) models
	Learning CTMCs

	References
	A Reminder on Probability Theory
	Random vectors
	Conditional densities and expectations

	A Proof of the Fokker-Planck equation

