Lecture 05

Discrete diffusion models and discrete flow matching

MIT IAP 2026 | Jan 30, 2025

Peter Holderrieth and Ron Shprints

I I I i I- Sponsor: Tommi Jaakkola ‘ ’



Class Overview

e Lecture 1 - Flow and Diffusion Models

e Lecture 2 - Flow Matching: Training algorithm.

e Lecture 3 - Score Matching, Guidance: How to condition on a prompt.
e Lecture 4 - Build Image Generators: Latent spaces + Network

architectures

e Lecture 5 - Discrete diffusion models and flow matching
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Diffusion LLMs generate text in arbitrary order

MDLM Sampling step: 00/30

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS 2022
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Discrete diffusion models and discrete flow matching

- Models for discrete sequence data: Language, protein sequences, etc.
- Note: There is no diffusion/SDE and also no flow/ODE in discrete space.
- Rather: Learning principles of flow matching and denoising can be
generalized to discrete datal

- Mathematical model: Continuous-time Markov chains (CTMCs)
- Today:

- CTMC Models

- Discrete Flow Matching:

- Discrete Probability Paths

- Discrete Marginalization Trick
- Discrete FM objective



Continuous Time Markov Chains
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Example - Continuous-time Markov chain

a b
State space S — {a) b} Rate matrix Q= g | -\ )
b| A —A
By showing evolution equation (taking derivatives), one obtains:
p(Xtyn = a|Xy =a) p(Xiyn =a|lXe=0b)) 1 [1+ e~ 2 h 1 _ g—2Ah

Two-state CTMC: transition probabilities P(h) converge to 1/2

Convergence for h to infinity: K
2 2 il
% z P
1 1
2 2 /

time increment h



Examples of neighbors Qg (Z |a;) — O
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Algorithm 7 Sampling from a Factorized CTMC Model (Euler / 7-leaping)

Require: Rate network QY (factorized), initial distribution pi,;;, number of steps n

1: Set t <0
S | 2: Set step size h < %
amp Ing 3: Draw a sample Xy ~ pjnit, where Xy = (X(gl), .. ,X((,d)) e y¢
4: fori=1,...,ndo
from 5:  Compute factorized jump rates {g;(v)}j=1.4, vev + QY (- | X¢)
faCtonzed 6: forj=1,...,d (in parallel) do
7 z + X {current token at position j}
CTM C 8 Define the per-position Euler transition probabilities 5, +(- | X,fj ) = x) by
models has(w), otz
P2 =91-h ¥ q), v=s
v’ eV\{z}

Sample X7, ~ CATEGORICAL({f;+(v | 2)}vev)
10: end for

11: Sett<«t+h

12: end for

13: return X,

e




lllustration of sampling procedure

MDLM Sampling step: 00/30

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS 2022
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Generative Modeling with CTMCs

Data distribution: E.g. distribution

Paata(?) (2 €8) "

Initial distribution: E.g. uniform

Pinit(2) (2€8) 11

Bl

Goal: Convert “Noise” to Data with a CTMC

CTMC

X0 ~ Dinit - X 1 ™~ Pdata



Continuous Flow Matching

Conditional Conditional Conditional
Probability Path Vector Field Flow Matching Loss
Marginal i Marginal i Marginal
Probability Path Vector Field Flow Matching Loss




The Discrete Flow Matching Matrix

Conditional Conditional

Probability Path Rate Matrix
Marginal Marginal

Probability Path Rate Matrix

Discrete
Flow Matching Loss
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Example - Factorized Mixture Path AN

0.6

Value

Scheduler: () < g < 1 such that
Ko — O, K1 — 1

|dea: Noise each token independently with probability K¢

d

Kt and 1 —k;

pi(@ | 2) = [ |0 = ) pEh(5) + ke 82, (25)]

J=1 " Downweight noise Upweight data
Sampling procedure:

m; ~ Bernoulli(k:), &; ~ p.ii,

szijj+(1—mj)€j, ]= ,...,d

z=(z1,""",%a)

Check for yourself
that this is a cond.
prob. path!




Toy example

Figure credit:
Yaron Lipman

Pinit

Pdata




Discrete
Probability Path

Figure credit:
Yaron Lipman




Note difference
to before:
Probability is
teleported - not
moved through
space

Figure credit:
Yaron Lipman




Discrete
Probability Path

Figure credit:
Yaron Lipman




Kolmogorov Forward Equation

Discrete analogue to the continuity equation.

A CTMC with rate matrix Q_t follows the probability path

if and only if the Kolmogorov Forward Equation (KFE) holds:

dt ZQt (z|y)pt(y)

YyesS

change of probability Net inflow




Conditional Rate Matrix for Factorized Mixture Path

The conditional rate matrix for factorized mixture path is factorized (i.e. rates only
non-negative for one token updates) and given by

Q7 (ylz) = (QF (vis jl5))v..5

Qf (vi, j|z5) = 1I_€—tﬂt(5zj (vi) — 0z, (vi))

( If current token correct, zero rate

0 ifZUjZZj

f%?t 1 if By = 5l 75 2 If incorrect, jump to correct
— \ token

1_K’t 0 ifvz-;ézj,a:j;ézj

Outgoing rate from current token, if

—1 fv,=x;,2¢; # 2;
v J19 7& J incorrect

\
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Conditional Rate Matrix for Factorized Mixture Path

Qf (ylz) = (QF (vi, j|25))v:.5

Rt

:1—14,75

(8, (05) = 8y (v2))

].—K)t

Rates explode at
t=1

\

(

\

0
1
0
=

if Lj = Zj
if Vi = 24,Zj 7é Z3j
if (%) 75 Zjydj 75 Zj

if Vi =Tj5,%,4 75 Zj

If current token correct, zero rate

If incorrect, jump to correct
token

Outgoing rate from current token, if
incorrect




Conditional Prob. Path, Vector Field, and Score

Notation Key property Factorized mixture

Conditional Interpolates Pinit 4 ()
Probability D¢ (CB‘Z) and a data point z [1 [(1 = ) Pinie(5) 1 0, (xj)}

Path J=1
Conditional Qz ( |.’L') CTMC follows Q7 (ylz) = (Q?(vi,jle))m,j
Rate Matrix t y conditional path  Qz(vi,jlz;) = 1’f—tm(52j (v5) = Og, (v3))




Marginal Prob. Path, Vector Field, and Score

Notation Key property Formula

Marginal

- Interpolates Pini
Probability Pt and P Pinit E :pt (x|z)pdata(z)
Path Pdata e

Marginal Qt(ylx) CTMC follows ZQt (y|z) Pt (z|2)Pdatal?)

Vector -
marginal path
Field Jnarp tes pt(x)




Marginal Rate Matrix for Factorized Mixture Path

Known

Rate Matrix Q7 (vs, jlz;) = %(5% (@) = ()
| Q:(y|z) = (Qt(vs, J|T))w,;,j
Marginal | fo
Rate Matrix Qt(vz‘,ﬂx) — - t (pllt(zj = Uz|x) — 53;3 (’Uz))
— K/t \

Conditional probability!

Only unknown!




Discrete Flow Matching loss

Posterior probability network

Learn via classification:

LprMm (9) — EZNPdata,tNUnif[o, 1],z~p(+]2)

d

Z log 1. (22)

p%t(zj\x)

Cross-entropy loss for every

dimension!




Algorithm 8 Training factorized CTMC Model (Discrete Diffusion)

Require: Dataset of sequences z ~ pgata With z = (21,...,24) € yd.

initial (noise) token marginals pl(fl?t on V; schedule x; € [0, 1];
posterior network fy returning per-position logits over V; optimizer OPT
1: for each training iteration do
9 Sample a data point z ~ pgata
3:  Sample time ¢ ~ Unif[0, 1] and compute k < k;
4:  Sample a noisy state x ~ p;(- | z) (factorized mixture path):
5. forj=1,...,d (in parallel) do
6: Sample mask m; ~ Bernoulli(x)
7 Sample noise token &; ~ pi7),
8 Set &y «—my 25 4+ (1— ;) &;
9: end for
1 2% (B0 23)
11:  Predict terminal-token posteriors via logits from the network:

2;(-) « fo(z,1); = p%t(v | z); = Softma.x(ﬁj)(v)
12:  Discrete Flow Matching loss (token-wise NLL of z):

d
Lorm(0) « Y [ log p|, (2 | z); ]

j=1

13:  Update parameters: 6 < OPT.STEP (VgEDFM (0))
14: end for




Mask Diffusion Language Models

Introduce new token into vocabulary: [MASK]

This token indicates that we masked the reference token

O[MASK]

Initial distribution:



LLaDA - Large Language Diffusion Model Demo @ ZerosPU aueue

y Successfully acquired a GPU
medel, project page

Conversation

6]

< <

Write me a text about Boston in Shakespeare sty... processing | 15.0/13.3s

processing | 15.6/13.3s

Send

Word Constraints
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Sampling from a Masked Language Model

Start with fully masked (initial
distribution)
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t=0.3
—moT o mTs oo oo m S S mmm —eee e squad, ————=—=—= ————————-—
——————— --- to remember --—-- —-—-—-———-—- —--——-—---—-——- when --- —-——---
—_———— —— = to ________________________________ _ e ———— = _—
twenty adobe —-—-—-—-—--=- ——=== —-= ——— ———— —— — ————— of ————- water
---- --- along - --- —-- polished ----——--- which ---- --—-—= ——-
————————————— prehistoric —-—-—--—- —-—-— ————=- —-— —— —————-— ———— Many

__________________ — — — ln — — — — — — — — — — — — — — — — — — — — — — — —
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t=0.6

Many years later, as he faced —---

Buendia was to remember that distant - - —————-—-— when his —-—-————-

took --- to discover ---- At that ---- —-—————- was a village of
twenty adobe houses, built -- the bank of - river of clear water
that ran along - --- of polished stones, which were ----—- and
————————— like prehistoric eggs. —--—- —-—-—-—-—- —-—-- SO recent —---- many
things lacked names, and in —-——--- —=

________ them it was

_________ to —_——— e — —
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t=0.8

Many years later, as he faced the firing squad, Colonel Aureliano
Buendia was to remember that distant —----—-—----- when his father
took him to discover ice. At that time Macondo was a village of
twenty adobe houses, built on the bank of - river of clear water
that ran along a bed of polished stones, which were white and
enormous, like prehistoric eggs. The world --- so recent that many
things lacked names, and in order —-- indicate them 1t was
————————— to point.




Slide: Subham Sahoo

Many years later, as he faced the firing squad, Colonel Aureliano
Buendia was to remember that distant afternoon when his father
took him to discover ice. At that time Macondo was a village of
twenty adobe houses, built on the bank of a river of clear water
that ran along a bed of polished stones, which were white and
enormous, like prehistoric eggs. The world was so recent that many
things lacked names, and in order to indicate them it was
necessary to point.




Masked Diffusion LLMs generate text

MDLM Sampling step: 00/30

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS 2022

Slide: Subham Sahoo



Discussion: Discrete Diffusion Models vs Autoregressive
Models

Advantages

- Generate Multiple Tokens in Parallel — More Speed?!
- Generate Tokens in any order — Text editing?!
- New probability paths — Can we design ones that make semantic sense?

Disadvantages

- No KV caching — Less Speed?!
- Need to learn how to generate Tokens in any order — Harder to learn?!
- Autoregressive order (left-to-right) makes semantic sense — lIs it worth it?



Continuous Flow Matching

Conditional Conditional Conditional
Probability Path Vector Field Flow Matching Loss
Marginal i Marginal i Marginal
Probability Path Vector Field Flow Matching Loss




The Discrete Flow Matching Matrix

Conditional Conditional

Probability Path Rate Matrix
Marginal Marginal

Probability Path Rate Matrix

Discrete
Flow Matching Loss




How can it be that Flow Matching recipe works so similarly
for discrete data and CTMCs?

The principle underlying flow matching is more general. It can be derived for a
general class of Markov processes:

GENERATOR MATCHING: GENERATIVE MODELING WITH
ARBITRARY MARKOV PROCESSES

Peter Holderrieth!:!, Marton Havasi?2, Jason Yim!, Neta Shaul®3, Itai Gat?,
Tommi Jaakkola', Brian Karrer?, Ricky T. Q. Chen?, Yaron Lipman®



Class Recap

e Lecture 1 - Flow and Diffusion Models

e Lecture 2 - Flow Matching: Training algorithm.

e Lecture 3 - Score Matching, Guidance: How to condition on a prompt.

e Lecture 4 - Build Image Generators: Latent spaces + Network
architectures

e Lecture 5 - Discrete diffusion models and flow matching



This is our final class!

Thank you for joining us!!!!

Please fill out the subject evaluation surveys!



