
Lecture 04
Latent Spaces, Neural network architectures

MIT IAP 2026 | Jan 28, 2025

Peter Holderrieth and Ron Shprints

Sponsor: Tommi Jaakkola

Class Overview

● Lecture 1 - Flow and Diffusion Models

● Lecture 2 - Flow Matching: Training algorithm.

● Lecture 3 - Score Matching, Guidance: How to condition on a prompt.

● Lecture 4 - Build Image Generators: Latent spaces + Network

architectures

● Lecture 5 - Advanced Topics: Discrete diffusion models + distilled

models

Section 6:

Latent Spaces

Goal: Understand how data can be transformed into latents
that can be more efficiently modelled

The Need for Latent Spaces
- High-resolution image: 3 color channels, height 600, width

1000 → the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

The Need for Latent Spaces
- High-resolution image: 3 color channels, height 600, width

1000 → the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

Several problems:

- GPU memory blows up
- Learning problem is very hard
- Redundancy: Closeby pixels highly correlated

The Need for Latent Spaces
- High-resolution image: 3 color channels, height 600, width

1000 → the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

Several problems:

- GPU memory blows up
- Learning problem is very hard
- Redundancy: Closeby pixels highly correlated

Why is this a problem for diffusion models and not for supervised
learning?

The Need for Latent Spaces
- High-resolution image: 3 color channels, height 600, width

1000 → the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

Several problems:

- GPU memory blows up
- Learning problem is very hard
- Redundancy: Closeby pixels highly correlated

Why is this a problem for diffusion models and not for supervised
learning?

We learn a vector field - output is very high-dimensional!
We apply vector field many times (simulation of ODE)!

Latent Spaces are constructed via autoencoders

Data space Latent
space Data space

E
ncoder D
ec

od
er

Autoencoder = Encoder + Decoder

Compression

Latent Spaces are constructed via autoencoders

Data space Latent
space Data space

E
ncoder D
ec

od
er

Autoencoder = Encoder + Decoder

The Problem of Standard Autoencoders

Our goal is to transform data into latents and then learn
the distribution of latents.

Question: What happens to the data distribution when we
transform it into latent space?

Answer: We don’t know. The reconstruction loss does not
say anything about the distribution.

Problem: We might make the learning problem (i.e.
training) much harder. Therefore, we might be able to
compress but not able to learn how to sample the
distribution anymore.

Goal: Create autoencoder that creates “nice” latent distribution

A “bad” latent space

KL-divergence

The KL divergences measures how different two distributions are. It fulfills the
natural properties:

KL-divergence of two normal distributions

Dist. of
mean

Two normal distributions are given:

The formula for the KL-divergence is given in this case by:

Plotting

Minimum at 1

KL-divergence of two normal distributions

Dist. of
mean

Dist. of
variances

Let two normal distributions be given:

The formula for the KL-divergence is given in this case by:

VAE -
Training
Algorithm

Latent Diffusion Models (LDMs) - Recipe

1. Data: Take all training data x1,....,xN (e.g. all images on the internet)
2. Encoding: Convert all images into latents (for VAE simply take the mean

prediction)
3. Latent data: This gives us a dataset of latents z1,...,zN of significantly smaller

size than high resolution images
4. Latent diffusion model: Build a diffusion model for the dataset of latents, i.e.

the diffusion model now generates latent vectors!
5. Decoding: After sampling from the diffusion model, map generated latent

back to data space

Return decoded image as sample!

Note: Exact same recipe as before. Just with a transformed dataset!

Virtually all AI-generated Images or Videos that you see
are generated in latent spaces!
- Latent space is key: Memory would blow up too much otherwise. We need

to allow the model to focus on key parts!

Example - FLUX 2.0: Images of shape [3,1024,1024] ->[32,64,64]

Example - Stable Diffusion: Images of shape [3,256,256] -> [4,32,32]

Section 7:

Neural network architectures

Goal: Understand how to build neural networks for diffusion
models

Parameterizing a vector field in a neural network

Parameters

Latent
image

PromptTime

Encoding Time
Time is only one-dimensional, while all other variables are high-dimensional.

To make it “count” more, we embed it via the following sinusoidal embedding
into high-dimensional vector:

Note: Specific format is less important than the time embedding is a
d-dimensional normed vector:

Frequencies are chosen as follows:

Encoding Language Prompt

“A dog running on grass in a park at sunshine in an Italian city.””

To embed text, most models rely on pre-trained language embeddings:

- Use CLIP embeddings (Contrastive Language-Image Pre-training)
- T5 embeddings, etc. (other pre-trained models)
- Can also use LLM embeddings

Prompt embedding: The result of these embeddings is that the prompt a
sequence of vectors of length S:

Patchify: Turn an Image into a Sequence of Vectors

Source:
https://gowrishankar.info/blog/transformers-everywhere-patch-encoding-t
echnique-for-vision-transformersvit-explained/

L is the
sequence

length

Diffusion
Transformer (DiT)

Transformer model for
diffusion models.

Adapts transformer model
for specific form that is
required for diffusion
models.

Peebles, W., & Xie, S. (2023). Scalable diffusion models with transformers. In
Proceedings of the IEEE/CVF international conference on computer vision (pp.
4195-4205).

Diffusion Transformer Overview

Inputs

Attention
loop

Unpatchify

Background - Scaled dot-product attention

Attention is an operation that maps sequences of vectors to sequences of
vectors via simple matrix multiplication + softmax operation.

3 inputs:

1. Keys
2. Values
3. Queries

DiTBlock Overview
- Image via Self-attention: Process image itself

Queries = image, Keys = image, values = image

- Text via Cross-attention: Attend image to text

Queries = image, Keys = text embeds, values = text embeds

- Time via Adaptative Layer Normalization:

Scaling and offset of normalization is determined by time variable

All inputs are combined by summing them up.

Best way to understand a transform is to implement it! See
Lab 03! Further, lecture notes contain detailed information.

Bonus:

Large-scale diffusion models

Goal: Understand how diffusion models are trained at scale

Case Study: Stable Diffusion 3
Overview:

- Flow Matching model with “straight line” schedulers (CondOT path)
- Classifier-free guidance with weight 2.0 - 5.0
- Flow Matching in latent space (use pre-trained VAE)
- Number of parameters of model: 8 billion
- Number of simulation/sampling steps: 50
- Dataset: LAION

Image source: Scaling Rectified Flow
Transformers for High-Resolution Image
Synthesis [1]

https://laion.ai/blog/laion-5b/

Neural network architecture for Stable Diffusion 3

- Conditions on CLIP
(coarse-grained) and T5-XXL
(sequence-level) text
embeddings via cross-attention.

- MM-DiT architecture: Extends
DiT from class-conditioning to
text-conditioning and processes
text and images through the
entire network via cross-attention Image source: Scaling Rectified Flow

Transformers for High-Resolution Image
Synthesis [1]

Case Study - Meta MovieGen

Case Study: Meta MovieGen
- Flow Matching model with “straight line” schedulers (CondOT path)
- Classifier-free guidance
- Flow Matching in latent space (use pre-trained VAE) - Really crucial for

videos because of added time dimension
- Neural network architecture: DiT adapted to videos (what changs?!)
- Number of parameters of model: 30 billion
- 6,144 H100 GPUs!

Image source: Scaling Rectified Flow
Transformers for High-Resolution Image
Synthesis [1]

Bonus:

A guide to the diffusion literature

Goal: Understand different interpretations for diffusion models

Time conventions:

“Flow time convention”:

- Data: t = 1
- Noise: t = 0

“Diffusion time convention”:

- Data t = 0
- Noise: t → infinity

“Discrete time”:

- Use discrete time steps instead of continuous time steps
- No ODE or SDE but Markov chain
- DDIM ~= Probability flow ODE

DDPM
DDIM

Flow matching, rectified
flows, stochastic
interpolants

Score-based diffusion
models with SDEs

Noising Procedure - how to corrupt data?
Probability path (here):

Interpolant function:

“Forward” diffusion process:

Note: For Gaussian probability paths, the above procedures are equivalent.

Flow matching, rectified
flows

Stochastic interpolants

Denoising diffusion
models

Constructing noising procedures via forward noising
processes

The time-reversed SDE is a specific solution to the SDE extension trick that we discussed
for a specific noise level. Empirically, this is often not the best solution in practice.

Here: Flow Matching

- Arguably most simple flow and diffusion algorithms
- Allows you to restrict yourself to flows
- Allows you go from arbitrary to arbitrary

Note: The method presented here allows to convert
arbitrary distributions into arbitrary distributions!

Bridging arbitrary
distributions - Example

Videos without audio → videos
with audio

Low resolution images → high
resolution images

Unperturbed cells → perturbed
cells

etc.

Figure credit: Michael Albergo

Next class:
Friday, 12:30pm-2pm

Discrete diffusion models

E25-111 (same room)

