Lecture 04

Latent Spaces, Neural network architectures

MIT IAP 2026 | Jan 28, 2025

Peter Holderrieth and Ron Shprints

I I I i I- Sponsor: Tommi Jaakkola ‘ ’

Class Overview

e Lecture 1 - Flow and Diffusion Models
e Lecture 2 - Flow Matching: Training algorithm.

e Lecture 3 - Score Matching, Guidance: How to condition on a prompt.

e Lecture 4 - Build Image Generators: Latent spaces + Network
architectures
e Lecture 5 - Advanced Topics: Discrete diffusion models + distilled

models

Section 6:

Latent Spaces

Goal: Understand how data can be transformed into latents
that can be more efficiently modelled

The Need for Latent Spaces 2 € R?

- High-resolution image: 3 color channels, height 600, width
1000 — the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!l!

4

The Need for Latent Spaces

- High-resolution image: 3 color channels, height 600, width
1000 — the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

Several problems:

L

- GPU memory blows up
- Learning problem is very hard
- Redundancy: Closeby pixels highly correlated

The Need for Latent Spaces

- High-resolution image: 3 color channels, height 600, width
1000 — the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

Several problems:

L

- GPU memory blows up
- Learning problem is very hard
- Redundancy: Closeby pixels highly correlated

Why is this a problem for diffusion models and not for supervised
learning?

The Need for Latent Spaces

- High-resolution image: 3 color channels, height 600, width
1000 — the resulting dimension is: 3*600*1000 = 1.8 million!
- This is a very high-dimensional space!!!!

Several problems:

4

- GPU memory blows up
- Learning problem is very hard
- Redundancy: Closeby pixels highly correlated

Why is this a problem for diffusion models and not for supervised
learning?

’LLO . Rd N Rd We learn a vector field - output is very high-dimensional!
t - We apply vector field many times (simulation of ODE)!

Latent Spaces are constructed via autoencoders

Autoencoder = Encoder + Decoder

Data space

IA.

Latent
space

\ Japoou] /
/ Decoder \

Data space

- U

Latent Spaces are constructed via autoencoders

Qd

Autoencoder = Encoder + Decoder

Data space

- U

{d

Rk

Latent
space

\ Japoou] /
/ Decoder \

Data space

Compression

k<n

- U

The Problem of Standard Autoencoders

A “bad” latent space

Our goal is to transform data into latents and then learn
the distribution of latents.

Question: What happens to the data distribution when we s
transform it into latent space?

Answer: We don’t know. The reconstruction loss does not -os1
say anything about the distribution. 101

Problem: We might make the learning problem (i.e.

training) much harder. Therefore, we might be able to
compress but not able to learn how to sample the
distribution anymore.

z1l

Goal: Create autoencoder that creates “nice” latent distribution

KL-divergence

For two probability densities g, p, the Kullback-Leibler divergence (KL-divergence) is defined as

Dia(a(o) | (@) = [a(o)1og 2 =, f10g 253

The KL divergences measures how different two distributions are. It fulfills the
natural properties:

Dxw(q(z) || p(z)) = 0,
DkL(q(z) | p(z)) =0 <& q=p.

KL-divergence of two normal distributions

Two normal distributions are given:

q(z) = N(z;pq,021a) p(x) = N(2; pp, 0514)

The formula for the KL-divergence is given in this case by:

D Op

1 o; — ppl|?
Dxwi(q || p) = 5 (}C (U—g) — I14q 2’“’””) , where K(a) = Zai — loga; — 1.

Dist. of
mean

Plotting - k() = o — logax — 1

2:07

e |

a—-loga

Lo
(]

K(a)

0 1 2 3 4 5

Minimum at 1

KL-divergence of two normal distributions

Let two normal distributions be given:

q(z) = N(z;pq,021a) p(x) = N(2; pp, 051 4)

The formula for the KL-divergence is given in this case by:

D Op

1 o; — ppl|?
Dxwi(q || p) = 5 (}C (U—g) — I14q 2’“’””) , where K(a) = Zai — loga; — 1.

Dist. of Dist. of
variances mean

Algorithm 7 5-VAE Training Procedure

Require: Dataset of samples & ~ pata, encoder networks (ug(z),log o3 (z)),
decoder network pg(z), latent dim k, constants 3 > 0, 0% > 0
1: for each mini-batch {z;}2 , do
2. Encode each x;: p; < py(z;), logo? < log afb(wi)
3: Sample noise ¢; ~ N(0, I,)
4: Reparameterize: z; < u; +0; O¢;
5. Decode mean: &; < ug(z;)
6: Reconstruction loss:

VAE - .)
Training Lrecon = 5 D 57 01 = &
Algorithm -

7. KL loss to the prior pyrior(2) = N (0, I):

2
B

(3

(ui; +0i; —logoi; — 1)
1

B
EKL <—

1 F
7 2 j=
8: Total loss: £ < Liecon + B LKL

9: Update (¢,6) + grad update(L)

10: end for

Latent Diffusion Models (LDMs) - Recipe

—

Data: Take all training data x1,....,xN (e.g. all images on the internet)

2. Encoding: Convert all images into latents (for VAE simply take the mean
prediction)

3. Latent data: This gives us a dataset of latents z1,...,zN of significantly smaller
size than high resolution images

4. Latent diffusion model: Build a diffusion model for the dataset of latents, i.e.
the diffusion model now generates latent vectors!

5. Decoding: After sampling from the diffusion model, map generated latent

back to data space

Return decoded image as sample!

Note: Exact same recipe as before. Just with a transformed dataset!

Virtually all Al-generated Images or Videos that you see
are generated in latent spaces!

- Latent space is key: Memory would blow up too much otherwise. \We need
to allow the model to focus on key parts!

P Iens e T s e A e e T S —
SION e i, R e RN i S e AR

g poRh

Example - Stable Diffusion: Images of shape [3,256,256] -> [4,32,32]

Example - FLUX 2.0: Images of shape [3,1024,1024] ->[32,64,64]

Section 7:

Neural network architectures

Goal: Understand how to build neural networks for diffusion
models

Parameterizing a vector field in a neural network

Parameters u g ({1’; | y)

[LN\

Time Latent Prompt
image

Encoding Time

Time is only one-dimensional, while all other variables are high-dimensional.

To make it “count” more, we embed it via the following sinusoidal embedding
into high-dimensional vector:

1 i
TimeEmb(t) = — |cos(2mrwit) --- cos(2mwg/ot) sin(2rwqit) --- sin(2rwg/ot
Vi / /

Frequencies are chosen as follows:

1—1

wmax d/2—1)
w; =wmin() : i=1,...,d/2.

min

Note: Specific format is less important than the time embedding is a
d-dimensional normed vector: .
| TimeEmb(¢)|| = 1

Encoding Language Prompt

“A dog running on grass in a park at sunshine in an Italian city.”
To embed text, most models rely on pre-trained language embeddings:

- Use CLIP embeddings (Contrastive Language-Image Pre-training)
- T5 embeddings, etc. (other pre-trained models)
- Can also use LLM embeddings

Prompt embedding: The result of these embeddings is that the prompt a
sequence of vectors of length S:

PromptEmbed (yraw) € R°**

Patchify: Turn an Image into a Sequence of Vectors

Cropped Image

Source:

Image Patches

N
ST AN TN ENe
ANENEESEEEENEN
LENSERNNESESENY NN
L L L LT T LA
L TP T LT T Wi
Illl.l.l-.lllmn 11

Flattened Image Patches

SNAEEEEEENEEEEEEEEEEE D

https://gowrishankar.info/blog/transformers-everywhere-patch-encoding-t
echnique-for-vision-transformersvit-explained/

L is the
sequence
length

Diffusion
Transformer (DiT)

Transformer model for
diffusion models.

Adapts transformer model
for specific form that is
required for diffusion
models.

Peebles, W., & Xie, S. (2023). Scalable diffusion models with transformers. In

Proceedings of the IEEE/CVF international conference on computer vision (pp.
4195-4205).

Diffusion Transformer Overview

Inputs t = TimeEmb(t) € R* Zo = PatchEmb(z) € RV*#
i = PromptEmb(y) € R5*F
Attention
loop

Z;+1 = DiTBlock(%;,t,§) € RV** (i=0,...,N —1)

Unpatchif -
' Y u = Unpatchify(ZyW) € RE*HXW

Background - Scaled dot-product attention

Scaled dot-product attention. Given queries Q € RV*% keys K € RM*dr and values V € RMxdn,

T

Attn(Q, K, V) = softmax(QK

V e RY*%:
Vi)

where the softmax is applied row-wise.

Attention is an operation that maps sequences of vectors to sequences of
vectors via simple matrix multiplication + softmax operation.

3 inputs:
1. Keys
2. Values

3. Queries

DiTBlock Overview

- Image via Self-attention: Process image itself
Queries = image, Keys = image, values = image
- Text via Cross-attention: Attend image to text
Queries = image, Keys = text embeds, values = text embeds
- Time via Adaptative Layer Normalization:
Scaling and offset of normalization is determined by time variable

All inputs are combined by summing them up.

Best way to understand a transform is to implement it! See
Lab 03! Further, lecture notes contain detailed information.

Bonus:

Large-scale diffusion models

Goal: Understand how diffusion models are trained at scale

Image source: Scaling Rectified Flow

Case StUdy: Stable DifoSion 3 g;anrlzfeosrir:[elr]sforHigh—ResolutionImage

Overview:

- Flow Matching model with “straight line” schedulers (CondOT path)
- Classifier-free guidance with weight 2.0 - 5.0

- Flow Matching in latent space (use pre-trained VAE)

- Number of parameters of model: 8 billion

- Number of simulation/sampling steps: 50

- Dataset: LAION

https://laion.ai/blog/laion-5b/

Neural network architecture for Stable Diffusion 3

Conditions on CLIP
(coarse-grained) and T5-XXL
(sequence-level) text
embeddings via cross-attention.
MM-DiT architecture: Extends
DiT from class-conditioning to
text-conditioning and processes
text and images through the
entire network via cross-attention

(cupcna) cupLa4) TSXXL)

MM-DiT-Block 1

MM-DiT-Block 2

MM-DiT-Block d)

©e0 o
l;éﬁ
dle

Image source: Scaling Rectified Flow
Transformers for High-Resolution Image
Synthesis [1]

©6® ¢

Case Study - Meta MovieGen

Image source: Scaling Rectified Flow

Case StUdy: Meta MOVieGen ;;anrlitnsri?[elr]sforHigh-ResolutionImage

Flow Matching model with “straight line” schedulers (CondOT path)
Classifier-free guidance

Flow Matching in latent space (use pre-trained VAE) - Really crucial for
videos because of added time dimension

Neural network architecture: DiT adapted to videos (what changs?!)
Number of parameters of model: 30 billion

6,144 H100 GPUs!

Bonus:

A guide to the diffusion literature

Goal: Understand different interpretations for diffusion models

Time conventions:

“Flow time convention’:

- Data:t=1
- Noise:t=0

“Diffusion time convention”:

- Datat=0
- Noise: t — infinity
“Discrete time”’:

- Use discrete time steps instead of continuous time steps
- No ODE or SDE but Markov chain
- DDIM ~= Probability flow ODE

Flow matching, rectified
flows, stochastic
interpolants

Score-based diffusion
models with SDEs

DDPM
DDIM

Noising Procedure - how to corrupt data?

Probability path (here): Flow matching, rectified
flows
2
pi(z|z) = N (a2, B; 14)

Interpolant function:

Ii(€,2) = aze + Bz

Stochastic interpolants

“Forward” diffusion process:
dXt p— a’t (Xt)dt _l_ O.tth

Note: For Gaussian probability paths, the above procedures are equivalent.

Denoising diffusion
models

Constructing noising procedures via forward noising
processes
Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

score function

x=[(xt &logpt]]dt+g dw

Reverse SDE (noise — data)

The time-reversed SDE is a specific solution to the SDE extension trick that we discussed
for a specific noise level. Empirically, this is often not the best solution in practice.

Here: Flow Matching

- Arguably most simple flow and diffusion algorithms
- Allows you to restrict yourself to flows

- Allows you go from arbitrary Djpi4 to arbitrary Ddata

Note: The method presented here allows to convert
arbitrary distributions into arbitrary distributions!

Bridging arbitrary
distributions - Example

Videos without audio — videos
with audio

Low resolution images — high
resolution images

Unperturbed cells — perturbed
cells

etc.

Figure credit: Michael Albergo

Next class:
Friday, 12:30pm-2pm
Discrete diffusion models

E25-111 (same room)

