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Reminder: Conditional Prob. Path and Cond. Vector Field

Notation Key property Gaussian example

Conditional o 9
Probability Path Pt (*|2) ;nrfzrzz:izspgﬁg N(asz, Bi 14)

Vector Field Uy conditional path Qg — 5_at Z+ —x
¢

By

Conditional target( | ) ODE follows ( Bt Bt




Reminder: Marginal Prob. Path and Marginal Vector Field

Notation Key property Formula
Marginal Interpolates Pinit
Probability Pt o ; Pinit [ p, (2]2)pdata(2)d2
Path data

Marginal target( ) ODE follows / target (ZCIZ) Pt (a:|z)pdata(z) dz

Vector Uy marginal path ¢
Field ° ’ pt(x)




Algorithm 3 Flow Matching Training Procedure (General)

Require: A dataset of samples 2z ~ pgata, neural network uf
1: for each mini-batch of data do
2:  Sample a data example z from the dataset.
3:  Sample a random time ¢ ~ Unify y;.
4:  Sample x ~ pi(-|z)
5.  Compute loss

L(0) = |luf () — u (2[2)|

6: Update the model parameters 6 via gradient descent on L(6)
7: end for

We can learn the marginal vector field by approximating the cond. VF for
many different data points z.



Reminder: Sampling Algorithm for Flow Model

Algorithm 1 Sampling from a Flow Model with Euler method

Require: Neural network vector field u¢, number of steps n
. oett =0

Set step size h = %
Draw a sample Xo ~ pinit Random initialization!

for:=1,...,n—1do
Xt—l—h — Xt + h’LL?(Xt)
Update t < t+ h
end for

return X, Return final point




Section 4:

Training algorithms - 2: Score Matching

Goal: New perspective on flow and diffusion models.
SDE/Stochastic Sampling.
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Example - Score of Gaussian Probability Path

V log pi(x|2) =

iProof. 1 1
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(2m)a/267 7\ 26
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Vlogpi(e]z) =VIog N (z; avz, B 1a) = ———




Conditional Prob. Path, Vector Field, and Score

Notation Key property Gaussian example

Conditional ..
, Interpolates Pinit 2
Probability Path t(-2) and a data point z N( t<y P 1 d)

Conditional ODE follows . . .
utarget (37|Z) ( 51& at) o 0 &ZE

g a PR
Vector Field t conditional path t B, B,
Conditional :
Score V log pi(x|z) Gradient of % 1
. log-likelihood X
Function 2 2



Marginal Prob. Path, Vector Field, and Score

Notation Key property Formula
Marginal Interpolates Pini
Probability Pt P Pinit Pt (x|2)Paata(z)dz
and Pdata
Path
\I\;Iar?inal utarget (,T,') ODE follows / target (ZClZ) Pt (w|z)pdata(z) dz
ector t marginal path t
Field P P(2)
Marginal Can be used (z]2) (2)
Score  V log py (:E) to convert /Vlogpt(x|z)pt T1%)Pdatal?) 4,
FunCtlon ODE target Dt (.’L')

to SDE



Observation: Both Conditional VF and Cond Score are
linear functions! Just with different coefficients!

Conditional target ODE follows , Bt Bt
Vector Field Uy (x|z) conditional path Qg — Eat Z T Ew
Conditional .
Score V log p; (x| z) Cradientof T 1

: log-likelihood —5 < €T
Function 2 9



Reparameterization: Velocity Field —> Score Function

Q

At — tZ—t— tBt ], b= —

Ot Ot

u, 8% (z|2) =a;V log py(z]2) + by

u, 8% (x) =a;V log p¢(z) + by

Proof: Algebra. Insert formulas. See lecture notes.

Early Diffusion Models learnt the score function instead and then
just transformed it into the vector field! This is equivalent!



Algorithm 6 Score Matching Training Procedure (General)

Require: A dataset of samples 2 ~ pgata, score network s?
1: for each mini-batch of data do
2:  Sample a data example z from the dataset.
3:  Sample a random time ¢ ~ Unifg q).
4:  Sample z ~ p;(-|2)
5:  Compute loss

L(0) = |Is¢ (z) — Vlogpy(z[2)]|”

6: Update the model parameters 0 via gradient descent on L(6)
7: end for




Denoising Score Matching for Gaussian Prob. Path
T — Q2
B
e~N(0,I;) = z=o2+pe~N(awz,p1)

Vlogpi(z|z) = —

|
B2

€
:EtNUnifaszdata7€NN(071d) [”8? (at'z + ’Bte) + _t ||2]

Ldsm (9) :EtNUnif,zNPdata,wNPt(°IZ) [||sf (33) +

Note what the network does: It needs to predict the noise that was
used to corrupt the data point! (DENOISING diffusion models)



Algorithm 5 Score Matching Training Procedure for Gaussian probability path

Require: A dataset of samples 2z ~ Pdata, Score network s¢ or noise predictor €’

Require: Schedulers oy, 8; with ag = 81 =0, a1 = By =1
1: for each mini-batch of data do
2:  Sample a data example z from the dataset.

Sample a random time ¢ ~ Unifj ).

Sample noise € ~ N (0, I)

Set Ty = OZ + 5,56

Compute loss

Numerically
unstable for

7. Update the model parameters 6 via gradient descent on L(6). low betal

8: end for




Fokker-Planck equation

Given: XO ~ Dinit

Randomly initialized SDE

dXt — Ut (Xt)dt + O'tth

<equivalent>

Follow probability path:
Xt ~pe (0<t<1)

Marginals are
p t

Fokker-Planck equation holds

d
dtpt

Continuity equ.

2

() = —div(psus)(z) + %Apt(f’?)

Heat equ.




Fokker-Planck Equation
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Stochastic Sampling of diffusion models

Choose noise level 0¢. By “SDE extension trick”, we can sample from:

2
ST — [uga’-‘get(xt) + %twog pt(Xt)] dt + o, dW,

For Gaussian probability paths, we can express this solely in terms of the
score:

2
dXt = [(at == %) Vlngt(Xt) - tht] dt 4= O'tth

Plugin score network:

2
dXt — [(at + %) Sf(Xt) = tht:I dt =F O'tth



Deterministic Sampling Stochastic Sampling




Stochastic (SDE) Sampling with Diffusion Models

Conversion of
of noise into
protein
structure via
SDE
sampling

Slide credit:
Jason Yim




Why would we want stochastic/SDE dynamics?

In theory: All diffusion coefficients lead to the same result (sample from data
distribution).

In practice:

- Training error: Neural network has not perfectly learnt the marginal vector

field/score.
- Simulation error: We need to simulate SDE/ODE leading to discretization

error.

Downstream applications: Fine-tuning, inference-time optimization, etc. might
require stochastic evolution

Good news: ODE sampling often leads to the best results.
Therefore, SDE sampling is an option, not a must!




Aside: Langevin dynamics - Basis of Molecular Dynamics

simulation Molecular dynamics simulate Langevin
dynamics. This equals the SDE extension
trick for marginal vector field = zero and a

AN el LR constant probability path.
4 ',1}’9_*&_3,,.;‘»-'%1(, :
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XO ~ DPBoltzmann = Xt ~ DPBoltzmann

Equilibrium distribution



Key takeaway:

- Conversion formula: Learning the marginal vector field and learning the
score function is equivalent for Gaussian probability paths.

- Denoising score matching: Simple way of learning marginal score
functions by approximating conditional score functions.

- Sampling with score models: Add desired amount of noise + apply
correction to vector field



Section 6:

Classifier-free guidance

Goal: Understand how to enforce coherence to prompts



Image source: Scaling Rectified
Flow Transformers for
High-Resolution Image Synthesis
(1]

A swamp ogre with a pearl A car made out of vegetables. heat death of the universe,
earring by Johannes Vermeer line art

Unguided: “Generate an image.”

Guided: “Generate an image of a cat baking a cake.”



Vanilla Guided Sampling

Algorithm 7 Guided Sampling Procedure

Require: A trained guided vector field uf(z|y).
1: Select a prompt y € )V, such as “a cat baking a cake”.
2: Initialize Xy ~ pipit.
3: Simulate dX; = uf(X;|y)dt from t = 0 to ¢t = 1.




Image source:
Classifier-free

Vanilla Guidance leads to suboptimal Giftsion guigance (5.
results

Prompt: “Corgi
dog 7

These images do not
fit well to the prompt
and they have errors!




Intuition: Classifier guidance

No prompt

u';arget (33)




Intuition: Classifier guidance




Classifier-free guidance




Classifier-free guidance




Classifier-free guidance training: Account for empty token (J

Algorithm 5 Classifier-free guidance training

Require: Paired dataset (z,y) ~ pqata, neural network u!
1: for each mini-batch of data do
2:  Sample a data example (z,y) from the dataset.
Sample a random time ¢ ~ Unifjg ;.
Sample noise € ~ N(0, I)
Set T = a2z + Bie
With probability p drop label: y < & Drop label with a certain
Compute loss probability!

L(6) =luf (zly) — w,"*" (z]2)|”

8:  Update the model parameters 6 via gradient descent on L£(6).
9: end for




Sampling with Classifier-Free Guidance simply
is the same as before but we use the weighted
vector field:

up™ ()

(1 — w)uy(z]@) + wuy (z]y)

Algorithm 8 Classifier-Free Guidance Sampling Procedure

Require: A trained guided vector field u! (z|y).
1: Select a prompt y € )V, or take y = & for unguided sampling.
2: Select a guidance scale w > 1.
3: Initialize XO ~ Dinit -
4: Simulate dX; = [(1 — w)u! (X:|2) + wuf (X;|y)| dt from t =0 to ¢ = 1.




Image source:
Classifier-free
diffusion guidance [5].

Example: Classifier-Free Guidance




Example:
Classifier-Free
Guidance

Image source:
Classifier-free
diffusion guidance [5].




Virtually all Images or Videos that you see use CFG!

- CFG is key: Without classifier-free guidance (CFG), almost nothing would
work.

Example - Stable Diffusion 3: Classifier-free guidance scale w ~= 4.0




CFG does not model the data distribution anymore!

- CFG is a heuristic: We do not model the data distribution anymore. In fact,
we go beyond it! It is primarily justified by its good empirical results!

Data distribution
Increasing guidance strength

Image source:
Classifier-free
diffusion guidance [5].



Section 5:

A guide to the diffusion literature

Goal: Understand different interpretations for diffusion models



Time conventions:

“Flow time convention’:

- Data:t=1
- Noise:t=0

“Diffusion time convention”:

- Datat=0
- Noise: t — infinity
“Discrete time”’:

- Use discrete time steps instead of continuous time steps
- No ODE or SDE but Markov chain
- DDIM ~= Probability flow ODE

Flow matching, rectified
flows, stochastic
interpolants

Score-based diffusion
models with SDEs

DDPM
DDIM



Noising Procedure
Probability path (here):

pe(z|z) = N(ouz, Bi14)

Interpolant function:
Ii(€,2) = aue

“Forward” diffusion process:

dXt — Q¢ (Xt)dt + O'tth

Bz

Flow matching, rectified
flows

Stochastic interpolants

Denoising diffusion
models

Note: For Gaussian probability paths, the above procedures are equivalent.



Constructing noising procedures via forward noising
processes
Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

score function

x=[(xt &logpt ]]dt+g dw

Reverse SDE (noise — data)

The time-reversed SDE is a specific solution to the SDE extension trick that we discussed
for a specific noise level. Empirically, this is often not the best solution in practice.



Here: Flow Matching

- Arguably most simple flow and diffusion algorithms
- Allows you to restrict yourself to flows

- Allows you go from arbitrary Djpi4 to arbitrary  Ddata

Note: The method presented here allows to convert
arbitrary distributions into arbitrary distributions!




Bridging arbitrary
distributions - Example

Videos without audio — videos
with audio

Low resolution images — high
resolution images

Unperturbed cells — perturbed
cells

etc.

Figure credit: Michael Albergo



Class Overview

e Lecture 1 - Generation as Sampling. Flow and Diffusion Models
e Lecture 2 - Flow Matching: Training algorithm.

e Lecture 3 - Score Matching, Guidance: How to condition on a prompt.

e Lecture 4 - Build Image Generators: Network architectures + Latent
spaces
e Lecture 5 - Advanced Topics: Discrete diffusion models + distilled

models



Next class:
Monday, 11am-12:30pm
Neural network architectures + latent spaces!

E25-111 (same room)

Office hours: Today, 3pm-4:30pm in 36-156
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