

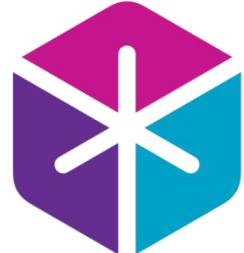
Lecture 2

Flow Matching

MIT IAP 2026 | Jan 22, 2025

Peter Holderrieth and Ron Shprints

Sponsor: Tommi Jaakkola



Reminder: Flow and Diffusion Models

Flow

Model

Initialize:

$$X_0 \sim p_{\text{init}},$$

ODE:

$$dX_t = u_t^\theta(X_t)dt$$

E.g. Gaussian

*Neural network
vector field*

Diffusion coeff.

Diffusion

Model

Initialize:

$$X_0 \sim p_{\text{init}},$$

SDE:

$$dX_t = u_t^\theta(X_t)dt + \sigma_t dW_t$$

To get samples, simulate ODE/SDE from $t=0$ to $t=1$ and return X_1

Next step: Training a flow model

Without training, the model produces “non-sense” → **We need to train** u_t^θ

Training = Finding parameters θ such that

$$X_0 \sim p_{\text{init}}, \quad dX_t = u_t^\theta(X_t)dt \quad \xrightarrow{\text{Implies}} \quad X_1 \sim p_{\text{data}}$$

Start with initial distribution

Follow along the vector field

The distribution of the final point = data distribution

Goal of lecture 2 (today):

Derive Flow Matching (training algorithm for flow models)

Section 2:

Flow Matching

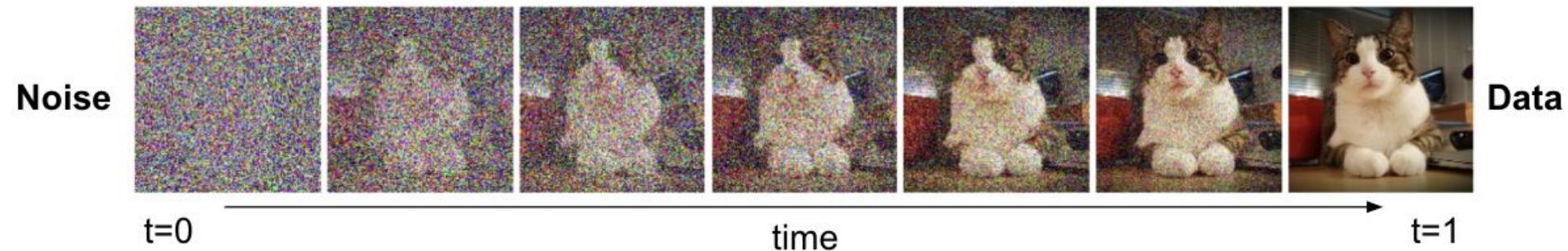
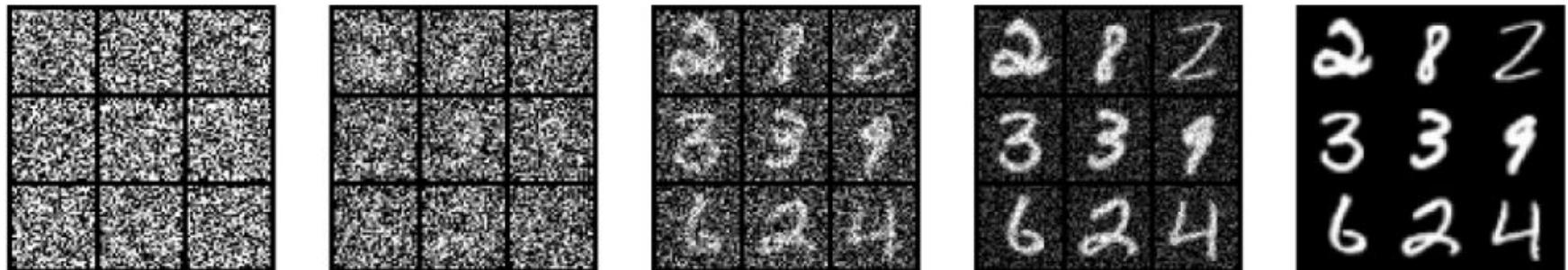
Goal: Derive a training algorithm for flow models

The Flow Matching Matrix

“Conditional” = “Per single data point”

“Marginal” = “Across distribution of data points”

Probability Paths: The Path from Noise to Data

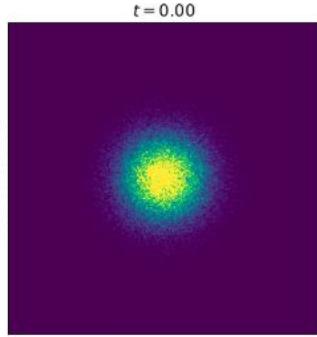
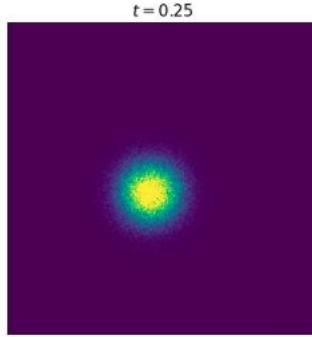
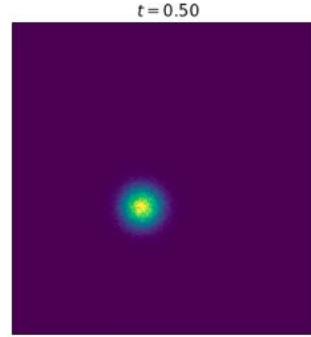
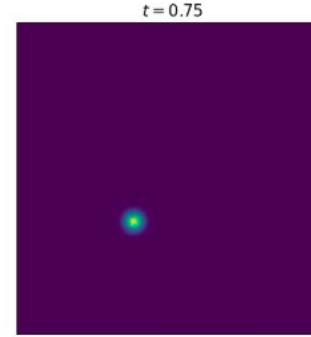
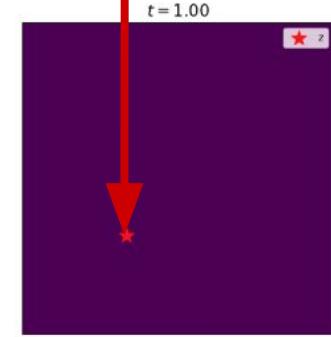


p_{init}

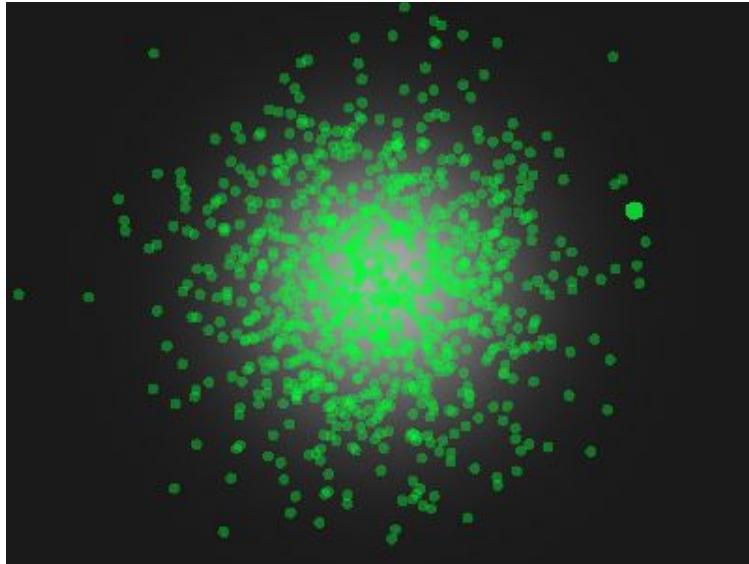
Conditional Probability Path $p_t(\cdot|z)$

 z

Conditional

 $t=0$ $t=1$

Plotting samples from a conditional probability path over time



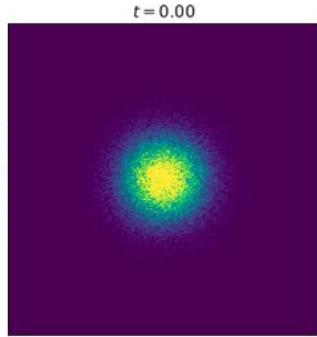
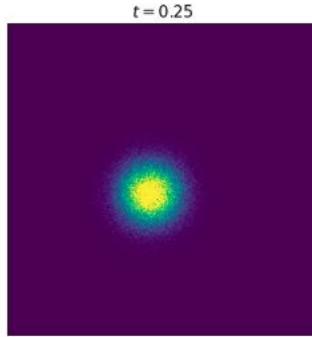
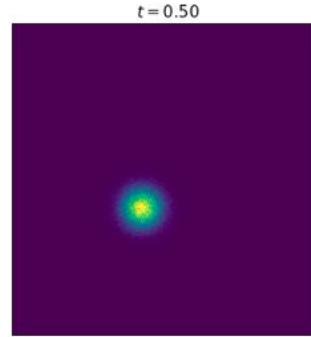
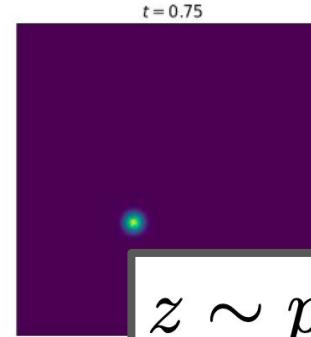
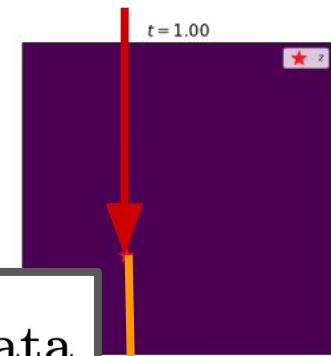
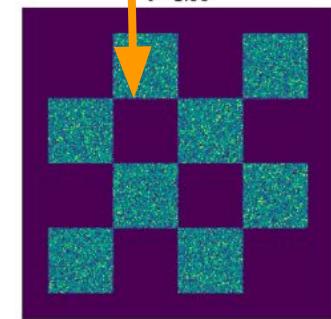
Note: A probability path only specifies the marginals (each snapshot). It says nothing about the evolution of a single particle in time (no dynamics).

p_{init}

Conditional Probability Path $p_t(\cdot|z)$

 z

Conditional

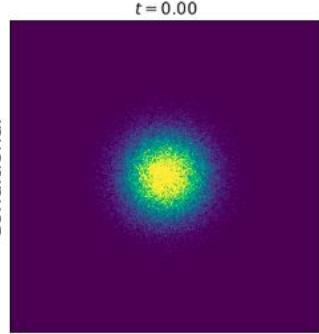
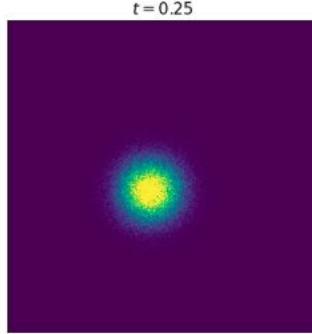
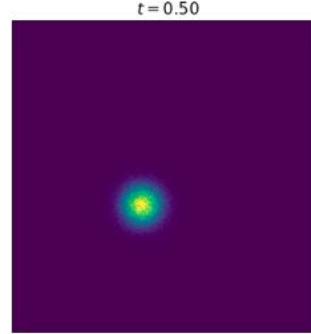
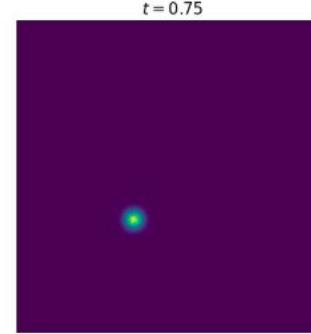
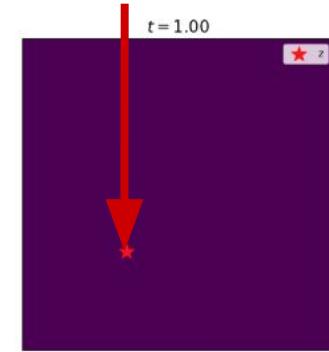
 $z \sim p_{\text{data}}$  p_{data}

p_{init}

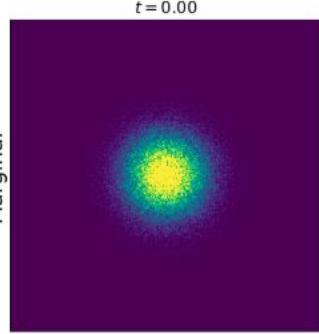
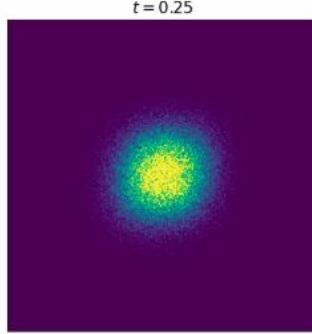
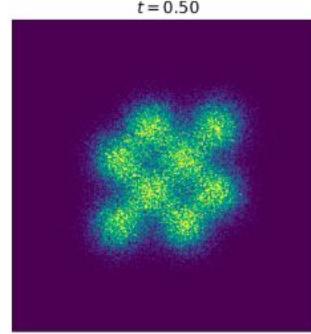
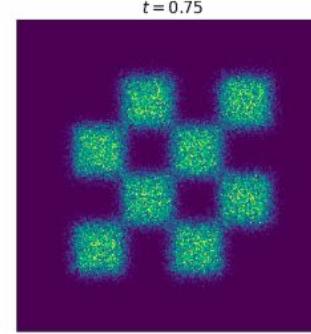
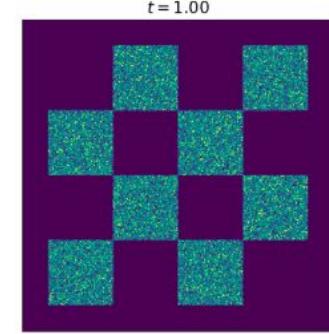
Conditional Probability Path $p_t(\cdot|z)$

 z

Conditional



Marginal

 p_{init}

Marginal Probability Path p_t

 p_t p_{data}

Conditional Prob. Path

	Notation	Key property	Gaussian example
Conditional Probability Path	$p_t(\cdot z)$	Interpolates p_{init} and a data point z	$\mathcal{N}(\alpha_t z, \beta_t^2 I_d)$
Conditional Vector Field			

Marginal Prob. Path

	Notation	Key property	Formula
Marginal Probability Path	p_t	Interpolates p_{init} and p_{data}	$\int p_t(x z)p_{\text{data}}(z)dz$
Marginal Vector Field			

Example - Conditional Vector Field for Gaussian

$$u_t^{\text{target}}(x|z) = \left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t} \alpha_t \right) z + \frac{\dot{\beta}_t}{\beta_t} x$$

Proof Sketch:

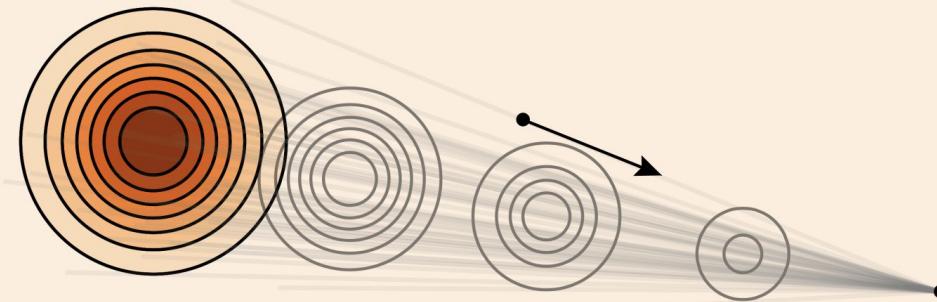
Step 1: By checking ODE, show that the flow of the vector field is given by

$$\psi_t^{\text{target}}(x_0|z) = \alpha_t z + \beta_t x_0$$

Step 2: If $X_0 = x_0 \sim \mathcal{N}(0, I_d)$ is random, then we know that then:

$$X_t = \psi_t(X_0|z) = \alpha_t z + \beta_t X_0 \sim \mathcal{N}(\alpha_t z, \beta_t^2 I_d) = p_t(\cdot|z)$$

Gaussian Conditional Probability Path And Conditional Vector Field

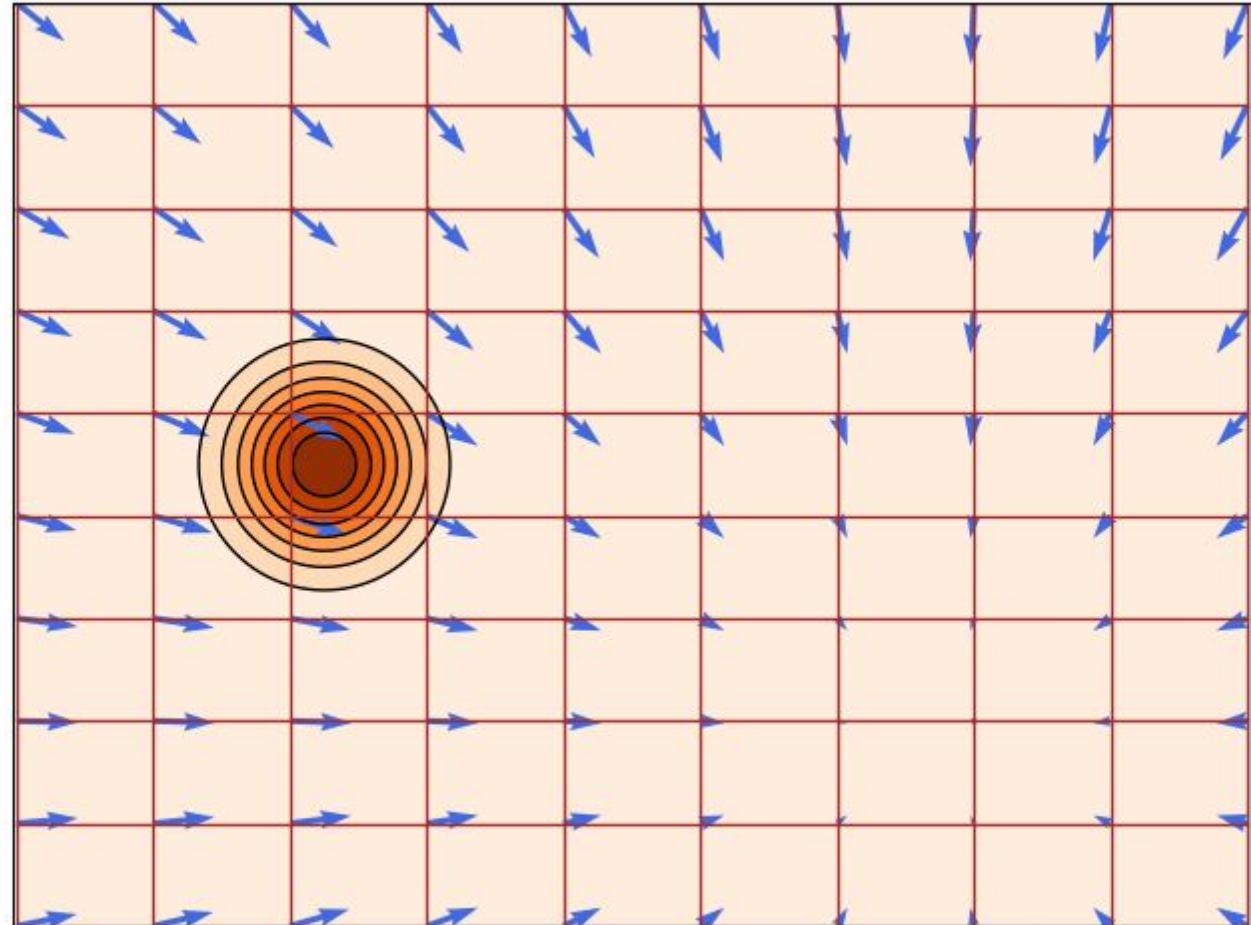


*Figure credit:
Yaron Lipman*

Simulating ODE with Conditional Vector Field for Conditional Probability Path

*NOTE: This is an animated gif
and is static in a PDF*

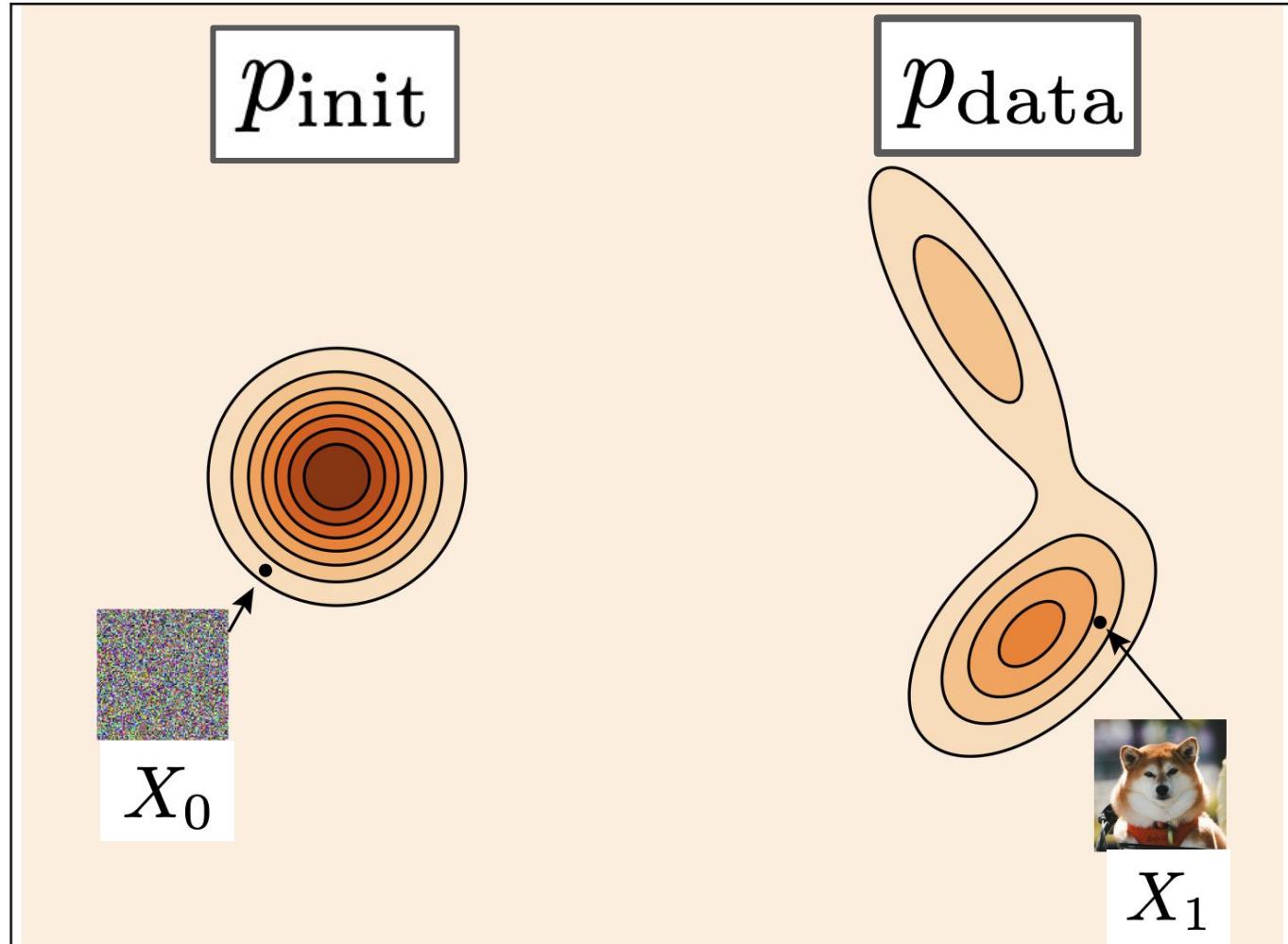
*Figure credit:
Yaron Lipman*



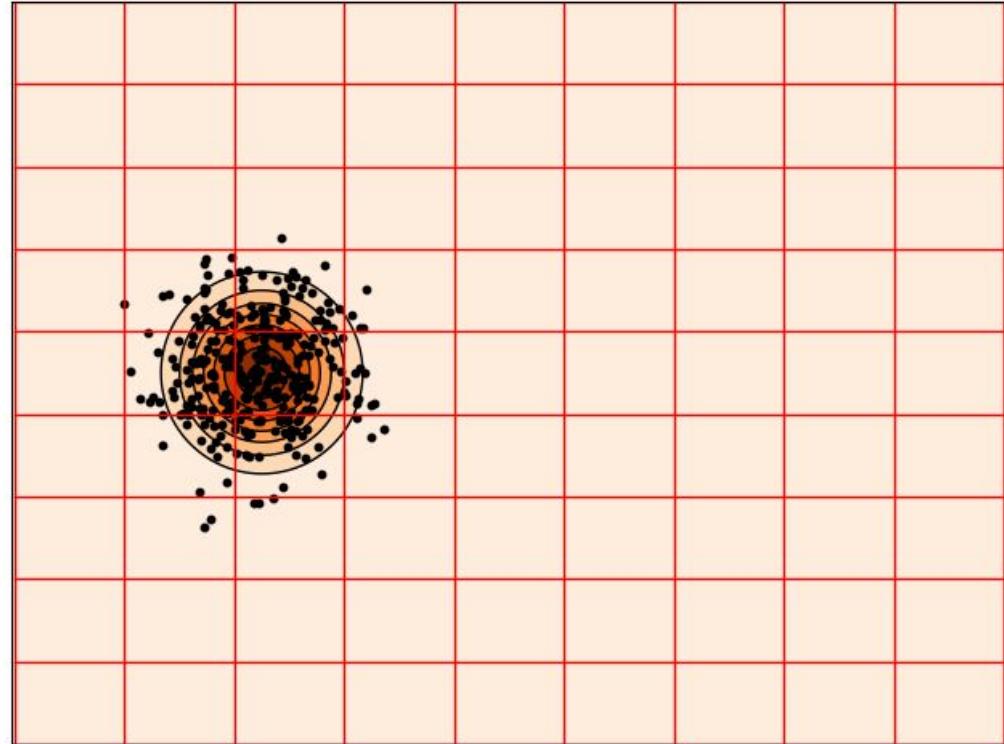
Toy example

*NOTE: This is an
animated gif and
is static in a PDF*

Figure credit:
Yaron Lipman



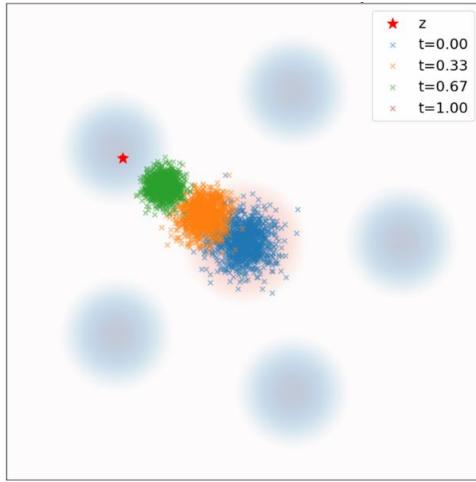
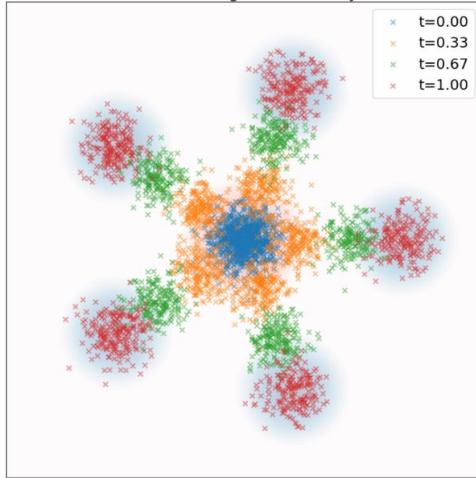
Simulating ODE with Marginal Vector Field for Gaussian Probability Path



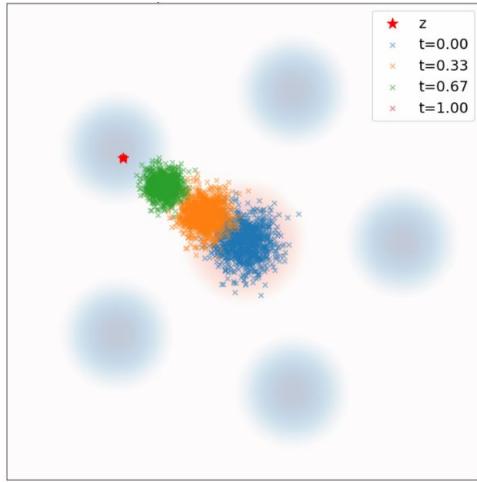
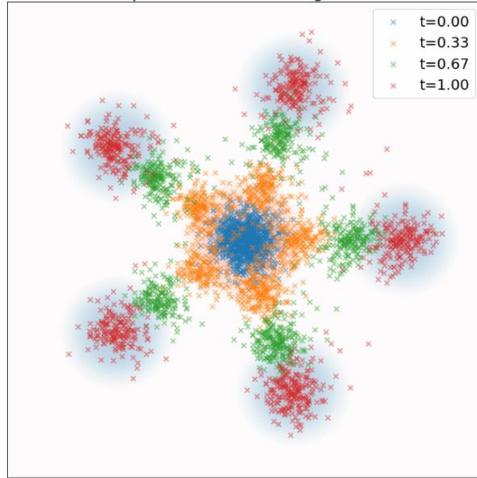
*Figure credit:
Yaron Lipman*

$$p_t(\cdot | z)$$

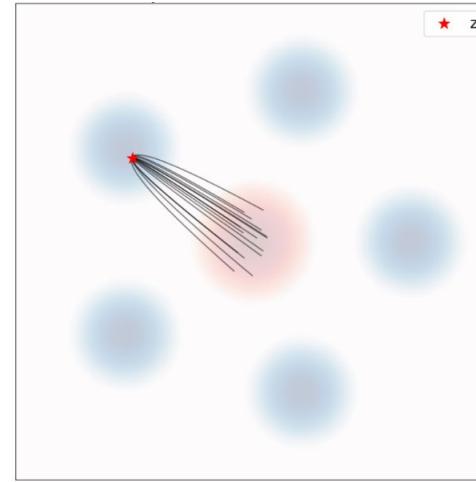
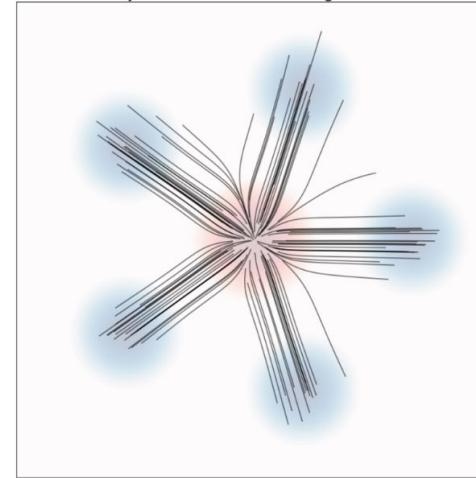
Ground truth



ODE samples



ODE Trajectories



Continuity Equation

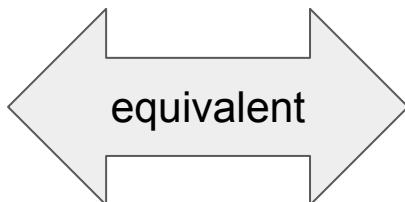
Randomly initialized ODE

Given: $X_0 \sim p_{\text{init}}, \quad \frac{d}{dt}X_t = u_t(X_t)$

Follow probability path:

$$X_t \sim p_t \quad (0 \leq t \leq 1)$$

*Marginals are
 p_t*



Continuity equation holds

$$\frac{d}{dt}p_t(x) = -\text{div}(p_t u_t)(x)$$

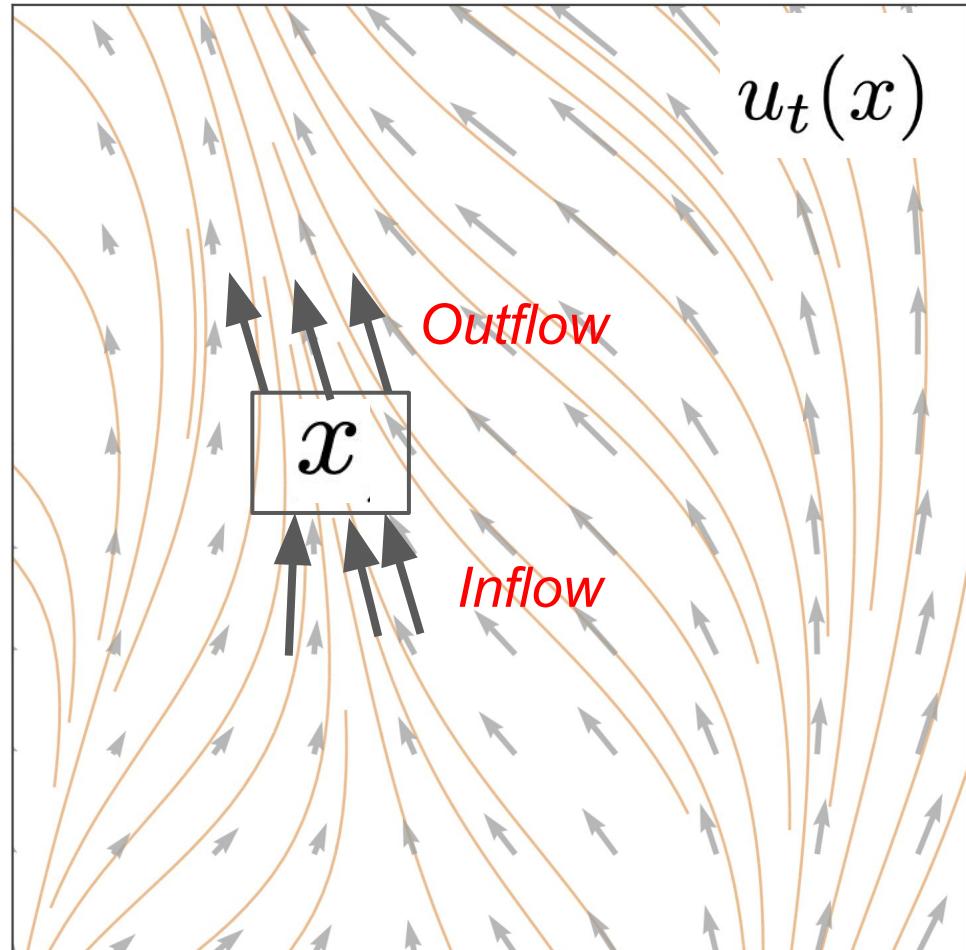
PDE holds

Continuity Equation

$$\frac{d}{dt}p_t(x) = -\operatorname{div}(p_t u_t)(x)$$

Change of probability mass at x

Outflow - inflow of probability mass from u



Conditional Prob. Path, Vector Field, and Score

	Notation	Key property	Gaussian example
Conditional Probability Path	$p_t(\cdot z)$	Interpolates p_{init} and a data point z	$\mathcal{N}(\alpha_t z, \beta_t^2 I_d)$
Conditional Vector Field	$u_t^{\text{target}}(x z)$	ODE follows conditional path	$\left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t} \alpha_t \right) z + \frac{\dot{\beta}_t}{\beta_t} x$

Marginal Prob. Path, Vector Field, and Score

Notation	Key property	Formula
Marginal Probability Path	p_t Interpolates p_{init} and p_{data}	$\int p_t(x z)p_{\text{data}}(z)dz$
Marginal Vector Field	$u_t^{\text{target}}(x)$ ODE follows marginal path	$\int u_t^{\text{target}}(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} dz$

Example marginal vector field - Meta MovieGen

These videos are generated by simulating the ODE with
the (learnt) marginal vector field

Algorithm 3 Flow Matching Training Procedure (General)

Require: A dataset of samples $z \sim p_{\text{data}}$, neural network u_t^θ

- 1: **for** each mini-batch of data **do**
- 2: Sample a data example z from the dataset.
- 3: Sample a random time $t \sim \text{Unif}_{[0,1]}$.
- 4: Sample $x \sim p_t(\cdot|z)$
- 5: Compute loss

$$\mathcal{L}(\theta) = \|u_t^\theta(x) - u_t^{\text{target}}(x|z)\|^2$$

- 6: Update the model parameters θ via gradient descent on $\mathcal{L}(\theta)$
- 7: **end for**

Conditional Flow Matching for Gaussian probability path

Prob. path

$$\mathcal{N}(\alpha_t z, \beta_t^2 I_d)$$

Conditional VF

$$u_t^{\text{target}}(x|z) = \left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t} \alpha_t \right) z + \frac{\dot{\beta}_t}{\beta_t} x$$

Noise Sampling

$$x \sim p_t(\cdot|z) \Leftrightarrow x = \alpha_t z + \beta_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, I_d)$$

Plugging in Noise Sampling into CFM Loss results in:

$$L_{\text{CFM}}(\theta)$$

$$= \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, x \sim p_t(\cdot|z)} [\|u_t^\theta(x) - u_t^{\text{target}}(x|z)\|^2]$$

$$= \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(0, I_d)} [\|u_t^\theta(\alpha_t z + \beta_t \epsilon) - u_t^{\text{target}}(\alpha_t z + \beta_t \epsilon|z)\|^2]$$

$$= \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(0, I_d)} [\|u_t^\theta(\alpha_t z + \beta_t \epsilon) - (\dot{\alpha}_t z + \dot{\beta}_t \epsilon)\|^2]$$

noise+data

velocity

Straight Line Schedule

$$L_{\text{CFM}}(\theta)$$

$$= \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(0, I_d)} \left[\|u_t^\theta(\alpha_t z + \beta_t \epsilon) - (\dot{\alpha}_t z + \dot{\beta}_t \epsilon)\|^2 \right]$$

$$= \mathbb{E}_{t \sim \text{Unif}, z \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(0, I_d)} \left[\|u_t^\theta(tz + (1-t)\epsilon) - (z - \epsilon)\|^2 \right]$$

Linear
interpolation
of noise and
data

Difference
between
noise and
data

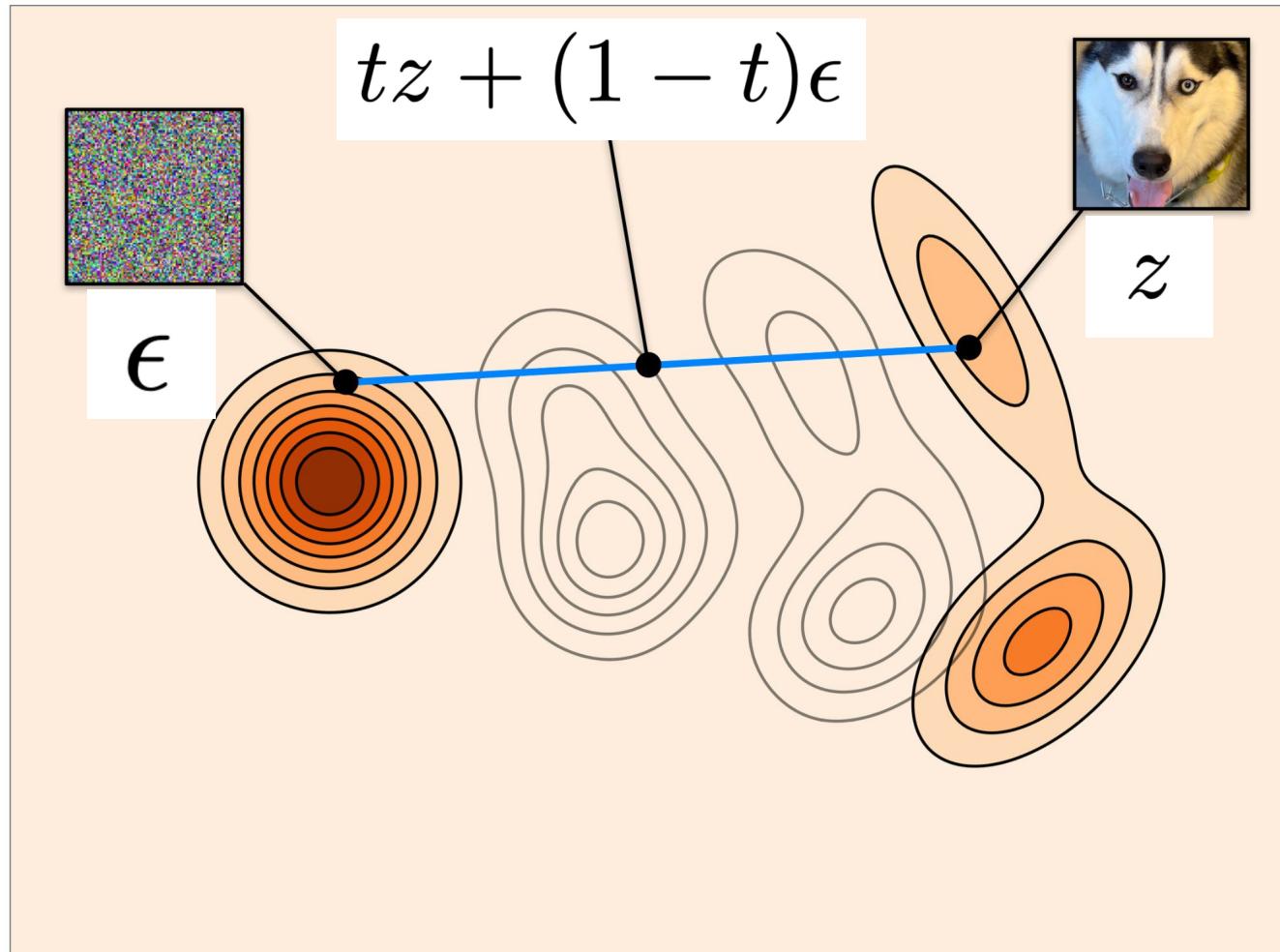


Figure
credit:
Yaron
Lipman

Algorithm 4 Flow Matching Training for CondOT path

Require: A dataset of samples $z \sim p_{\text{data}}$, neural network u_t^θ

- 1: **for** each mini-batch of data **do**
- 2: Sample a data example z from the dataset.
- 3: Sample a random time $t \sim \text{Unif}_{[0,1]}$.
- 4: Sample noise $\epsilon \sim \mathcal{N}(0, I_d)$
- 5: Set $x = tz + (1 - t)\epsilon$
- 6: Compute loss

$$\mathcal{L}(\theta) = \|u_t^\theta(x) - (z - \epsilon)\|^2$$

- 7: Update the model parameters θ via gradient descent on $\mathcal{L}(\theta)$.
- 8: **end for**

Example Flow Matching - Meta MovieGen

The neural network that generates these videos was trained with the algorithm in the previous slide

Example Flow Matching - Stable Diffusion 3

**The neural network that generates these images was trained
with the algorithm just shown**

Reminder: Sampling Algorithm for Flow Model

Algorithm 1 Sampling from a Flow Model with Euler method

Require: Neural network vector field u_t^θ , number of steps n

- 1: Set $t = 0$
- 2: Set step size $h = \frac{1}{n}$
- 3: Draw a sample $X_0 \sim p_{\text{init}}$ *Random initialization!*
- 4: **for** $i = 1, \dots, n - 1$ **do**
- 5: $X_{t+h} = X_t + h u_t^\theta(X_t)$
- 6: Update $t \leftarrow t + h$
- 7: **end for**
- 8: **return** X_1 *Return final point*

The Flow Matching Matrix

Conditional Prob. Path, Vector Field, and FM Loss

Notation

Key property

Gaussian example

Conditional Probability Path	$p_t(\cdot z)$	Interpolates p_{init} and a data point z	$\mathcal{N}(\alpha_t z, \beta_t^2 I_d)$
------------------------------	----------------	---	--

Conditional Vector Field	$u_t^{\text{target}}(x z)$	ODE follows conditional path	$\left(\dot{\alpha}_t - \frac{\dot{\beta}_t}{\beta_t} \alpha_t \right) z + \frac{\dot{\beta}_t}{\beta_t} x$
--------------------------	----------------------------	------------------------------	--

Conditional FM Loss	$L_{\text{CFM}}(\theta)$	Loss we minimize during training	$\mathbb{E}_{t,z,x}[\ u_t^\theta(x) - u_t^{\text{target}}(x z)\ ^2]$
---------------------	--------------------------	----------------------------------	--

All these objects are tractable. Just analytical formulas!

Marginal Prob. Path, Vector Field, and FM Loss

Notation	Key property	Formula
Marginal Probability Path	p_t Interpolates p_{init} and p_{data}	$\int p_t(x z)p_{\text{data}}(z)dz$
Marginal Vector Field	$u_t^{\text{target}}(x)$ ODE follows marginal path	$\int u_t^{\text{target}}(x z) \frac{p_t(x z)p_{\text{data}}(z)}{p_t(x)} dz$
Marginal FM Loss	$L_{\text{FM}}(\theta)$ Implicitly minimized via cond FM loss	$\mathbb{E}_{t,z,x}[\ u_t^\theta(x) - u_t^{\text{target}}(x)\ ^2]$

None of these objects are tractable. But we can still learn them!

Next class:

Friday (Tomorrow), 11am-12:30pm

Score matching and guidance!

E25-111 (same room)

Office hours: Tomorrow, 3pm-4:30pm in 36-156