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Welcome to class 6.S184!
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Peter Ron Tommi



Generative AI - A new generation of AI systems

These systems are “creative”: they generate new objects.

Draft TextsArtistic Images Realistic Videos

This class teaches you algorithms to generate objects.



Flow and Diffusion Models: state-of-the-art models for 
generating images, videos, proteins!

Stable Diffusion

DALEE

OpenAI Sora

Meta MovieGen

Most SOTA generative AI models for 
images/videos/proteins/robotics: Diffusion and Flow Models

AlphaFold3

Boltz



This Class: Theory and Practice of Flow/Diffusion Models

Flow and Diffusion 
Models

The goal of this class to teach you: 

1. Flow and diffusion models from first principles. 
2. The minimal but necessary amount of mathematics for 1.
3. How to implement and apply these algorithms.

Ordinary/stochastic differential 
equations

Theory

Practice How to implement and apply these 
machine learning models



Class Overview
● Lecture 1 (today): 

○ From Generation to Sampling: Formalize “generating an image/etc.”

○ Construct Flow and Diffusion Models

● Lecture 2 - Flow Matching: Training algorithm.

● Lecture 3 - Score Matching, Guidance: How to condition on a prompt.

● Lecture 4 - Build Image Generators: Network architectures + Latent spaces

● Lecture 5 - Advanced Topics: Discrete diffusion models, distilled models



Section 1:

From Generation to Sampling

Goal: Formalize what it means to “generate” something.



We represent images/videos/protein as vectors
Images: 

- Height H and Width W
- 3 color channels (RBG)

Videos:

- T time frames
- Each frame is image

Molecular structures:

- N atoms
- Each atom has 3 coordinate

We represent the objects we want to generate as vectors: 



What does it mean to successfully generate something?
Prompt: “A picture of a dog”

Useless Bad Wrong animal Great!< < <

These are subjective statements - Can we formalize this?



Data Distribution: How “likely” are we to find this picture in 
the internet? Prompt: “A picture of a dog”

Impossible Rare Unlikely Very likely< < <

How good an image is ~= How likely it is under the 
data distribution



Generation means sampling the data distribution: 

Generation as sampling from the data distribution

Data distribution: Distribution of objects that we want to generate:

Probability density:
Note: We 
don’t know the 
probability 
density!



A Dataset consists of samples from the data distribution

Training requires datasets: To train our algorithms, we need a dataset. 

Examples:

● Images: Publicly available images from the internet
● Videos: YouTube
● Protein structures: Scientific data (e.g. Protein Data Bank)

A dataset consists of a finite number of samples from the data 
distribution: 



Conditional Generation allows us to condition on prompts

Fixed prompt

Conditional data distributionData distribution
Condition variable: y

y=“Dog”        y=“Cat”     y=“Landscape”

We will first focus on unconditional generation and then learn how to 
translate an unconditional model to a conditional one.

“Dog”

Conditional generation means sampling the conditional data 
distribution: 



A generative model converts samples from a initial distribution (e.g. 
Gaussian) into samples from the data distribution:  

Generative Models generate samples from data distribution

Initial distribution: 

Generative 
Model

Default:



Summary

● Objects to Generate: We focus on vectors z representing data objects (e.g., images, videos)

● Data distribution: Distribution that places higher probability to objects that we consider 

“good”.

● Generation as sampling: generate an object = sampling from the data distribution

● Dataset: Finite number of samples from the data distribution used for training

● Conditional Generation: Condition on label y and sample from the conditional data 

distribution

● Generative Model: Train a model to transform samples from a simple (e.g., Gaussian) 

distribution into the data distribution.



Section 2:

Flow and Diffusion Models

Goal: Understand differential equations and how we can build 
generative models with them.



ODE Trajectory 
- Example

Source: https://mariogemoll.com/flow-matching



Flow - Example



Theorem (Picard–Lindelöf theorem): If the vector field         , is 
continuously differentiable with bounded derivatives, then a unique 
solution to the ODE 

exists. In other words, a flow map exists. More generally, this is true if 
the vector field is Lipschitz.

Existence and Uniqueness Theorem ODEs

Key takeaway: In the cases of practical interest for machine learning, 
unique solutions to ODE/flows exist.

Math class: Construct solutions via Picard-Iteration 



Example: Linear ODE
Simple vector field:

Claim: Flow is given by

Proof:

1. Initial condition:

2. ODE:



Numerical ODE simulation - Euler method

Small step into direction of vector field

Return trajectory



Euler Method - Example

Source: https://mariogemoll.com/flow-matching

Small step sizeLarge step size

More efficient but higher error Lower error but less efficient



Toy example

Figure credit: 
Yaron Lipman



Toy Flow 
Model

Figure credit: 
Yaron Lipman



Return final point

How to generate objects with a Flow Model

Random initialization!



Example - Videos Generated via Flow Model Sampling



Stochastic Process: Random Trajectories

Sample 2Sample 1 Sample 3

Note: A single stochastic process can give rise to many trajectories as 
the evolution becomes random.
Source: https://mariogemoll.com/flow-matching



Brownian Motion: Random Trajectories

Sample 2Sample 1 Sample 3

A Brownian motion behaves like a continuous random walk. 
Here: 2-dimensional.

Source: https://mariogemoll.com/flow-matching



Brownian Motion



Existence and Uniqueness Theorem SDEs
Theorem: If the vector field         , is continuously differentiable with bounded 
derivatives and the diffusion coeff. is continuous, then a unique solution (in 
distribution) to the SDE 

exists. More generally, this is true if the vector field is Lipschitz.

Key takeaway: In the cases of practical interest for machine learning, 
unique solutions to SDEs exist.

Stochastic calculus class: Construct solutions via stochastic integrals and 
Ito-Riemann sums 



Numerical SDE simulation (Euler-Maruyama method)

Add additional noise with var=h 
scaled by diffusion coefficient



Ornstein-Uhlenbeck Process

Increasing diffusion coefficient





ODE Sampling SDE Sampling



Logistics
How to pass this class:

1. Come to lecture
2. Do the labs (necessary to pass)!

Lab 1 is out today (see website)! We recommend doing it as 
soon possible for you!

Support:

1. Use the lecture notes (self-contained)
2. Come to office hours

Website: https://diffusion.csail.mit.edu/

https://diffusion.csail.mit.edu/


Next class:
Thursday (Day after tomorrow), 

11am-12:30pm

E25-111 (same room)

Office hours: Wednesday (tomorrow), 11am-12:30pm in 36-144


