

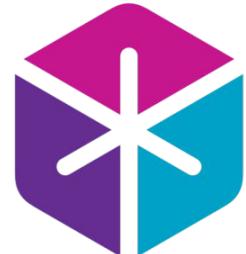
Generative AI with Stochastic Differential Equations

An introduction to flow and diffusion models

MIT IAP 2026 | Jan 20, 2025

Peter Holderrieth and Ron Shprints

Sponsor: Tommi Jaakkola



Welcome to class 6.S184!

Course Instructors

Peter

Ron

Sponsor

Tommi

Generative AI - A new generation of AI systems

Artistic Images

Realistic Videos

Draft Texts

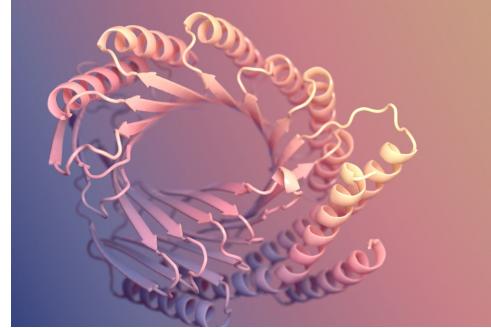
These systems are “creative”: they generate new objects.

This class teaches you algorithms to generate objects.

Flow and Diffusion Models: state-of-the-art models for generating images, videos, proteins!

Stable Diffusion
DALEE

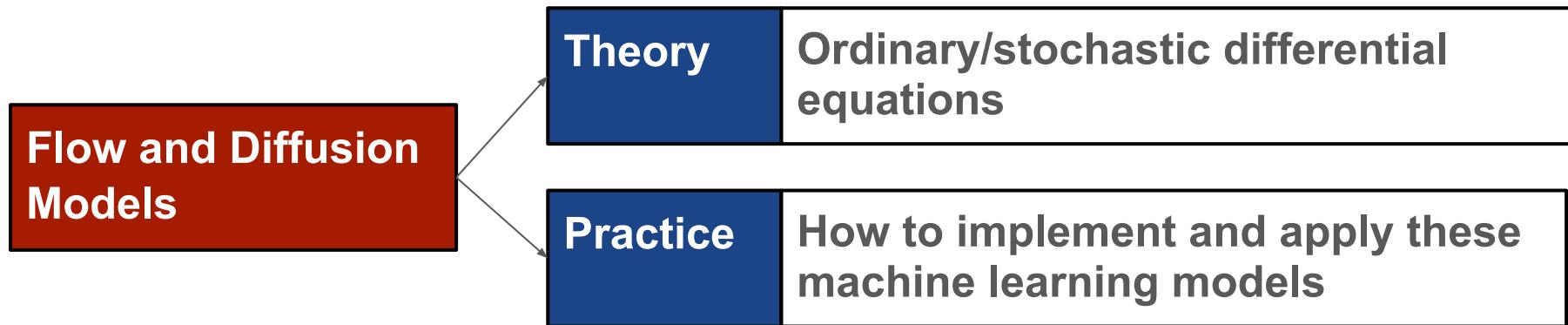
OpenAI Sora
Meta MovieGen



AlphaFold3
Boltz

Most SOTA generative AI models for images/videos/proteins/robotics: Diffusion and Flow Models

This Class: Theory and Practice of Flow/Diffusion Models



The goal of this class to teach you:

1. Flow and diffusion models from *first principles*.
2. The *minimal* but necessary amount of mathematics for 1.
3. How to implement and apply these algorithms.

Class Overview

- **Lecture 1 (today):**
 - From Generation to Sampling: Formalize “generating an image/etc.”
 - Construct Flow and Diffusion Models
- **Lecture 2 - Flow Matching:** Training algorithm.
- **Lecture 3 - Score Matching, Guidance:** How to condition on a prompt.
- **Lecture 4 - Build Image Generators:** Network architectures + Latent spaces
- **Lecture 5 - Advanced Topics:** Discrete diffusion models, distilled models

Section 1:

From Generation to Sampling

Goal: Formalize what it means to “generate” something.

We represent images/videos/protein as vectors

Images:

- Height H and Width W
- 3 color channels (RBG)

Videos:

- T time frames
- Each frame is image

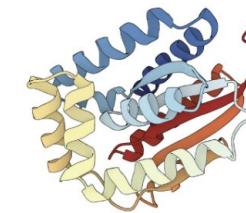
Molecular structures:

- N atoms
- Each atom has 3 coordinate

$$z \in \mathbb{R}^{H \times W \times 3}$$

$$z \in \mathbb{R}^{T \times H \times W \times 3}$$

$$z \in \mathbb{R}^{N \times 3}$$



We represent the objects we want to generate as vectors:

$$z \in \mathbb{R}^d$$

What does it mean to successfully generate something?

Prompt: “A picture of a dog”

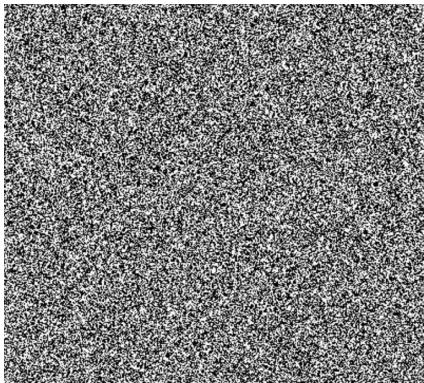


Useless < Bad < Wrong animal < Great!

These are subjective statements - Can we formalize this?

Data Distribution: How “likely” are we to find this picture in the internet?

Prompt: “A picture of a dog”



Impossible < Rare < Unlikely < Very likely

How good an image is \sim How likely it is under the data distribution

Generation as sampling from the data distribution

Data distribution: Distribution of objects that we want to generate:

Probability density:

$$p_{\text{data}} : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0},$$

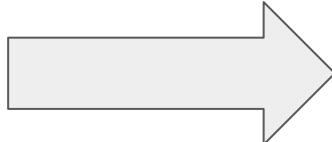
$$z \mapsto p_{\text{data}}(z)$$

$$p_{\text{data}}$$

*Note: We
don't know the
probability
density!*

Generation means sampling the data distribution:

$$z \sim p_{\text{data}}$$



$$z =$$

A Dataset consists of samples from the data distribution

Training requires datasets: To train our algorithms, we need a **dataset**.

Examples:

- Images: Publicly available images from the internet
- Videos: YouTube
- Protein structures: Scientific data (e.g. Protein Data Bank)

A dataset consists of a finite number of samples from the data distribution:

$$z_1, \dots, z_N \sim p_{\text{data}}$$

Conditional Generation allows us to condition on prompts

Data distribution p_{data}

Fixed prompt

“Dog”

Conditional data distribution $p_{\text{data}}(\cdot|y)$

Condition variable: y

y=“Dog”

y=“Cat”

y=“Landscape”

Conditional generation means sampling the conditional data distribution:

$$z \sim p_{\text{data}}(\cdot|y)$$

We will first focus on unconditional generation and then learn how to translate an unconditional model to a conditional one.

Generative Models generate samples from data distribution

Initial distribution:

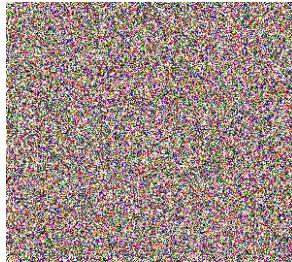
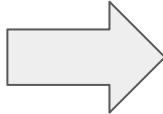
$$p_{\text{init}}$$

Default:

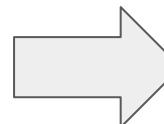
$$p_{\text{init}} = \mathcal{N}(0, I_d)$$

A generative model converts samples from a initial distribution (e.g. Gaussian) into samples from the data distribution:

$$x \sim p_{\text{init}}$$



Generative
Model



$$z \sim p_{\text{data}}$$

Summary

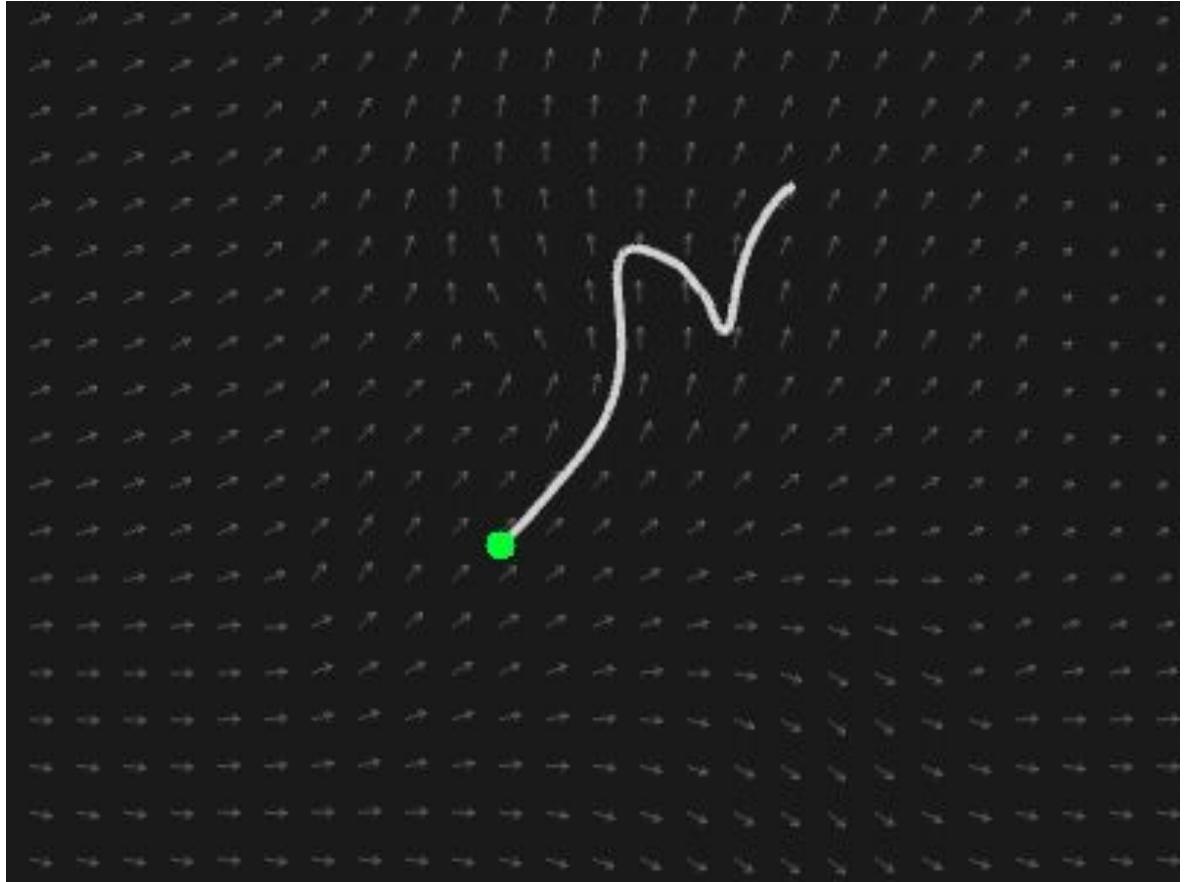
- **Objects to Generate:** We focus on vectors z representing data objects (e.g., images, videos)
- **Data distribution:** Distribution that places higher probability to objects that we consider “good”.
- **Generation as sampling:** generate an object = sampling from the data distribution
- **Dataset:** Finite number of samples from the data distribution used for training
- **Conditional Generation:** Condition on label y and sample from the conditional data distribution
- **Generative Model:** Train a model to transform samples from a simple (e.g., Gaussian) distribution into the data distribution.

Section 2:

Flow and Diffusion Models

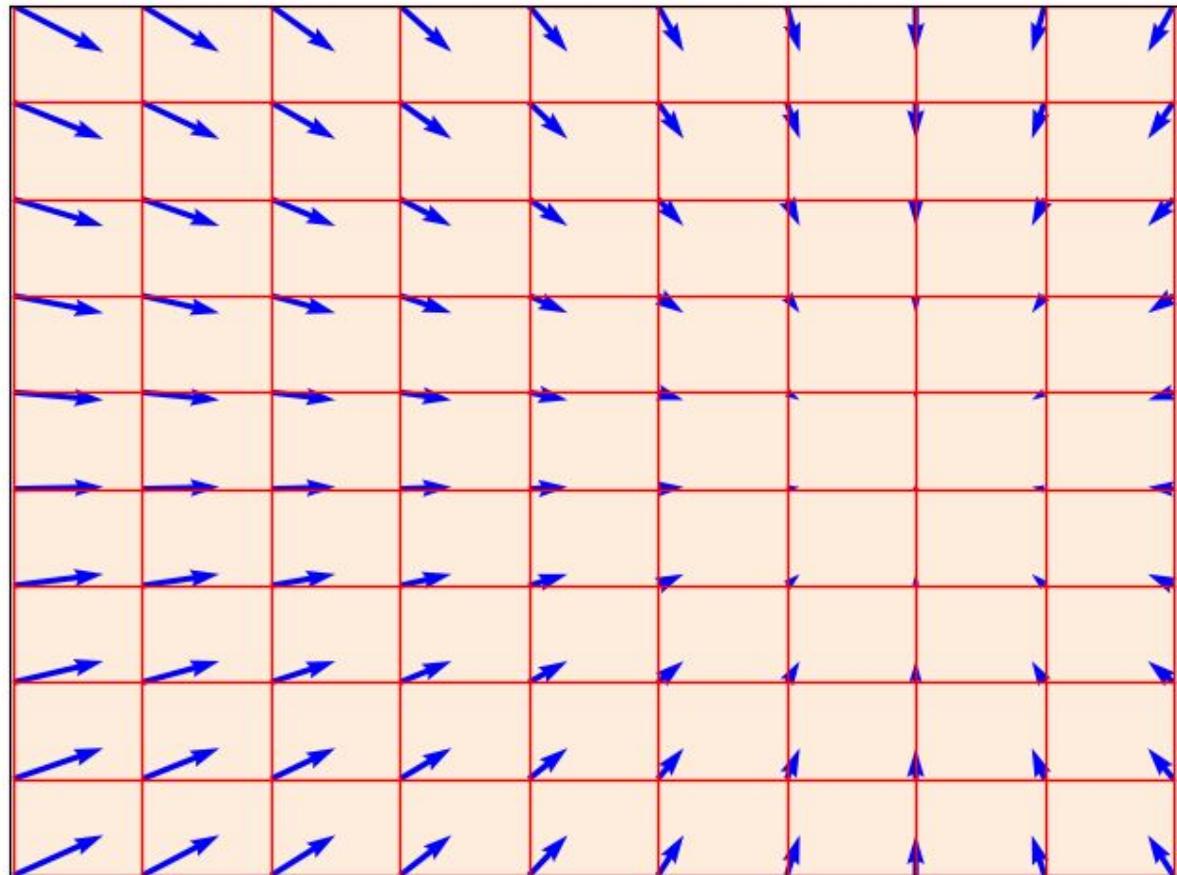
Goal: Understand differential equations and how we can build generative models with them.

ODE Trajectory - Example



Source: <https://mariogemoll.com/flow-matching>

Flow - Example



Existence and Uniqueness Theorem ODEs

Theorem (Picard–Lindelöf theorem): If the vector field $u_t(x)$ is continuously differentiable with bounded derivatives, then a *unique* solution to the ODE

$$X_0 = x_0, \quad \frac{d}{dt} X_t = u_t(X_t)$$

exists. In other words, a flow map exists. More generally, this is true if the vector field is **Lipschitz**.

Key takeaway: In the cases of practical interest for machine learning, **unique solutions to ODE/flows exist.**

Math class: Construct solutions via Picard-Iteration

Example: Linear ODE

Simple vector field:

$$u_t(x) = -\theta x \quad (\theta > 0)$$

Claim: Flow is given by

$$\psi_t(x_0) = \exp(-\theta t) x_0$$

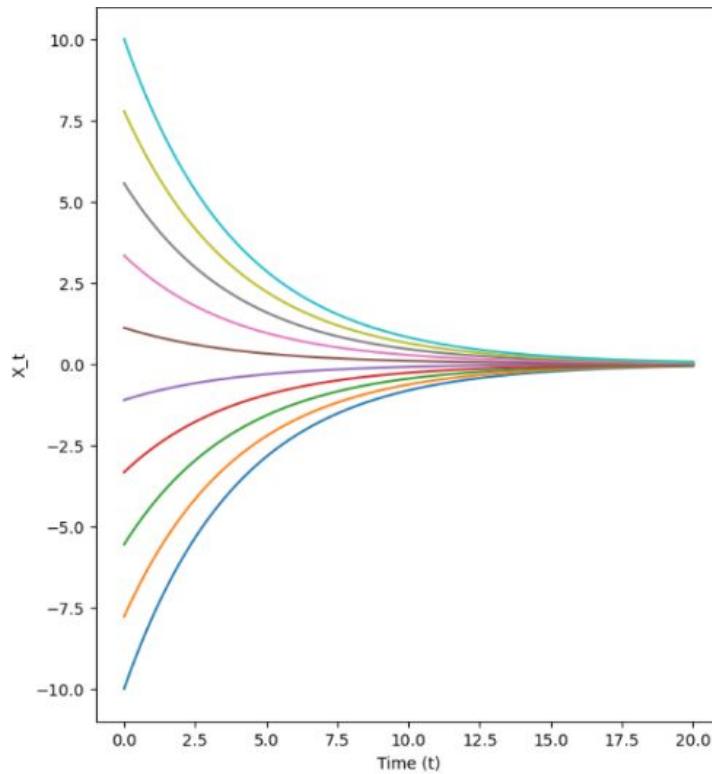
Proof:

1. Initial condition:

$$\psi_t(x_0) = \exp(0)x_0 = x_0$$

2. ODE:

$$\frac{d}{dt} \psi_t(x_0) = \frac{d}{dt} (\exp(-\theta t) x_0) = -\theta \exp(-\theta t) x_0 = -\theta \psi_t(x_0) = u_t(\psi_t(x_0))$$



Numerical ODE simulation - Euler method

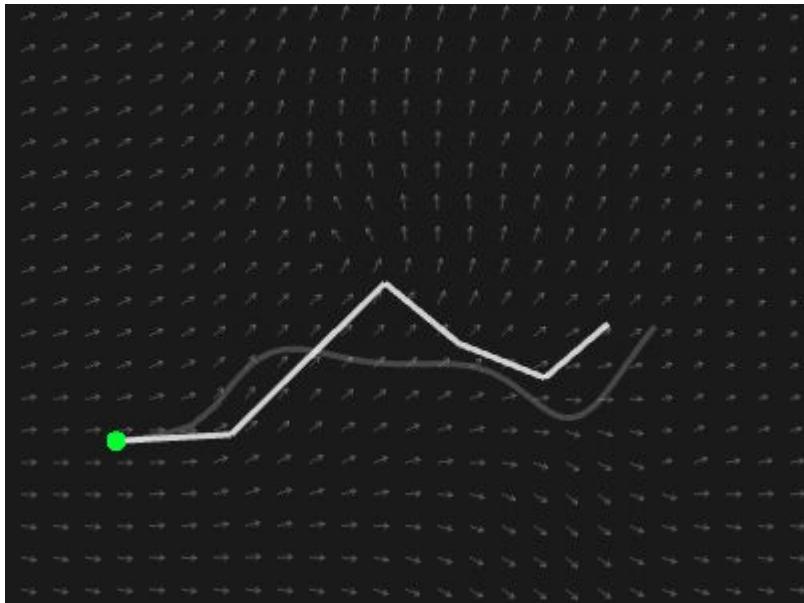
Algorithm 1 Simulating an ODE with the Euler method

Require: Vector field u_t , initial condition x_0 , number of steps n

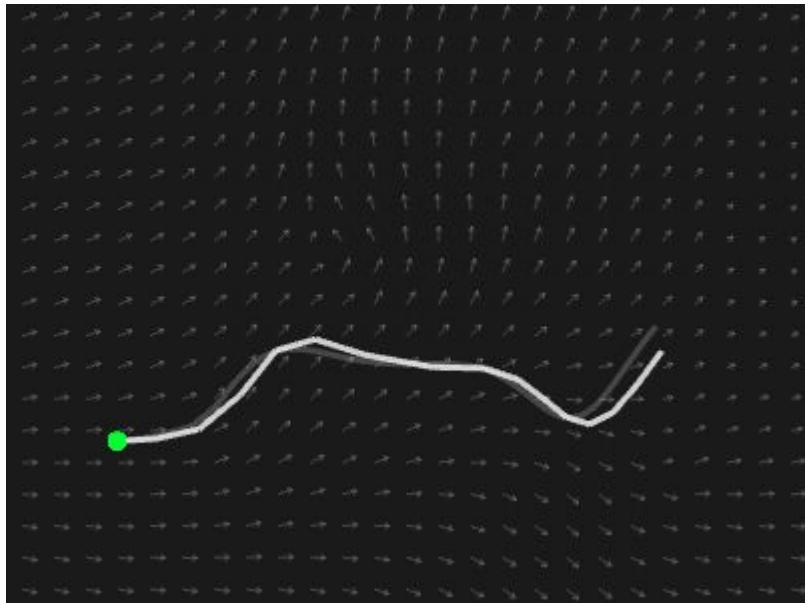
- 1: Set $t = 0$
- 2: Set step size $h = \frac{1}{n}$
- 3: Set $X_0 = x_0$
- 4: **for** $i = 1, \dots, n - 1$ **do**
- 5: $X_{t+h} = X_t + hu_t(X_t)$ *Small step into direction of vector field*
- 6: Update $t \leftarrow t + h$
- 7: **end for**
- 8: **return** $X_0, X_h, X_{2h}, \dots, X_1$ *Return trajectory*

Euler Method - Example

Large step size



Small step size

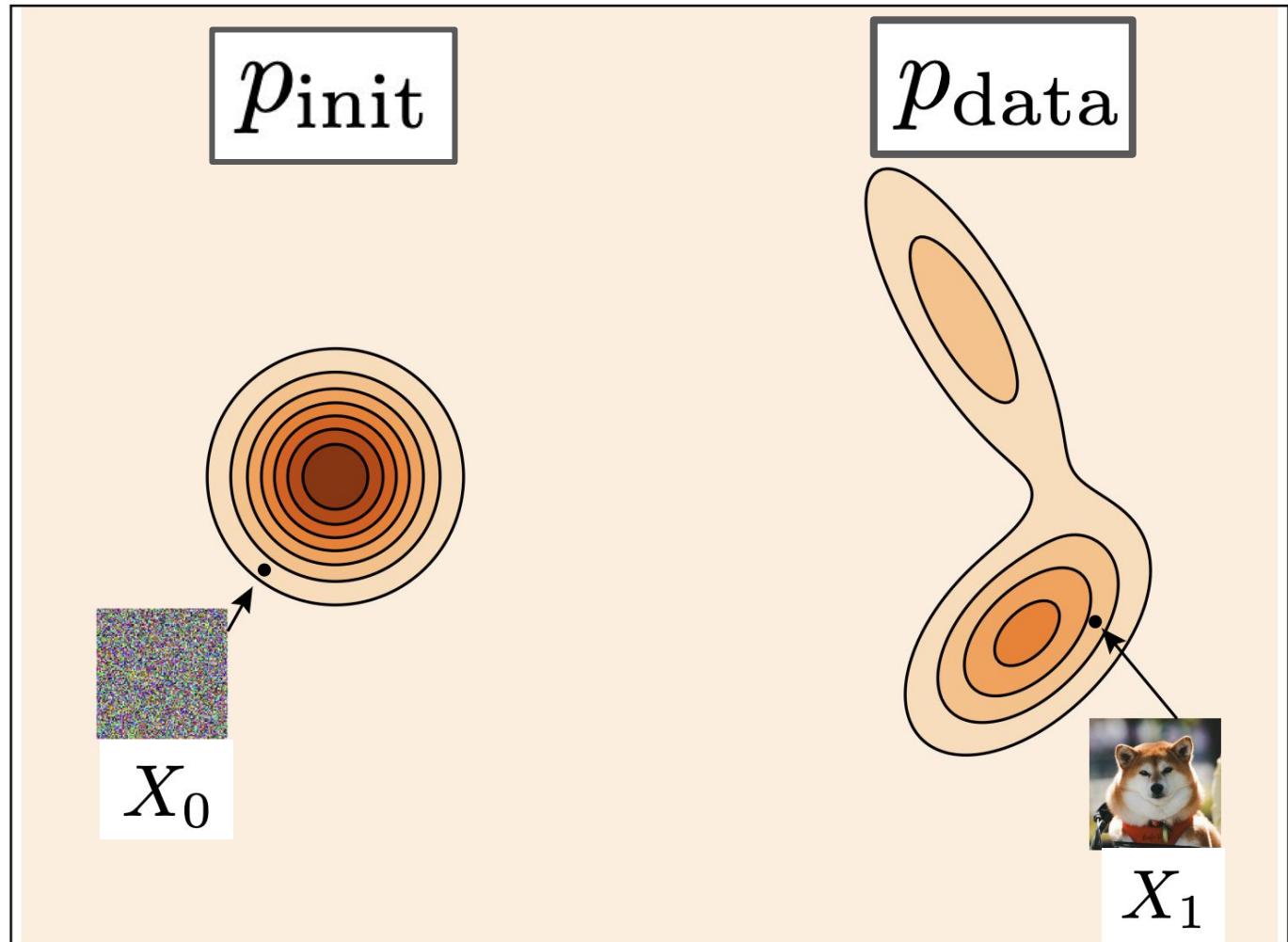


More efficient but higher error

Lower error but less efficient

Source: <https://mariogemoll.com/flow-matching>

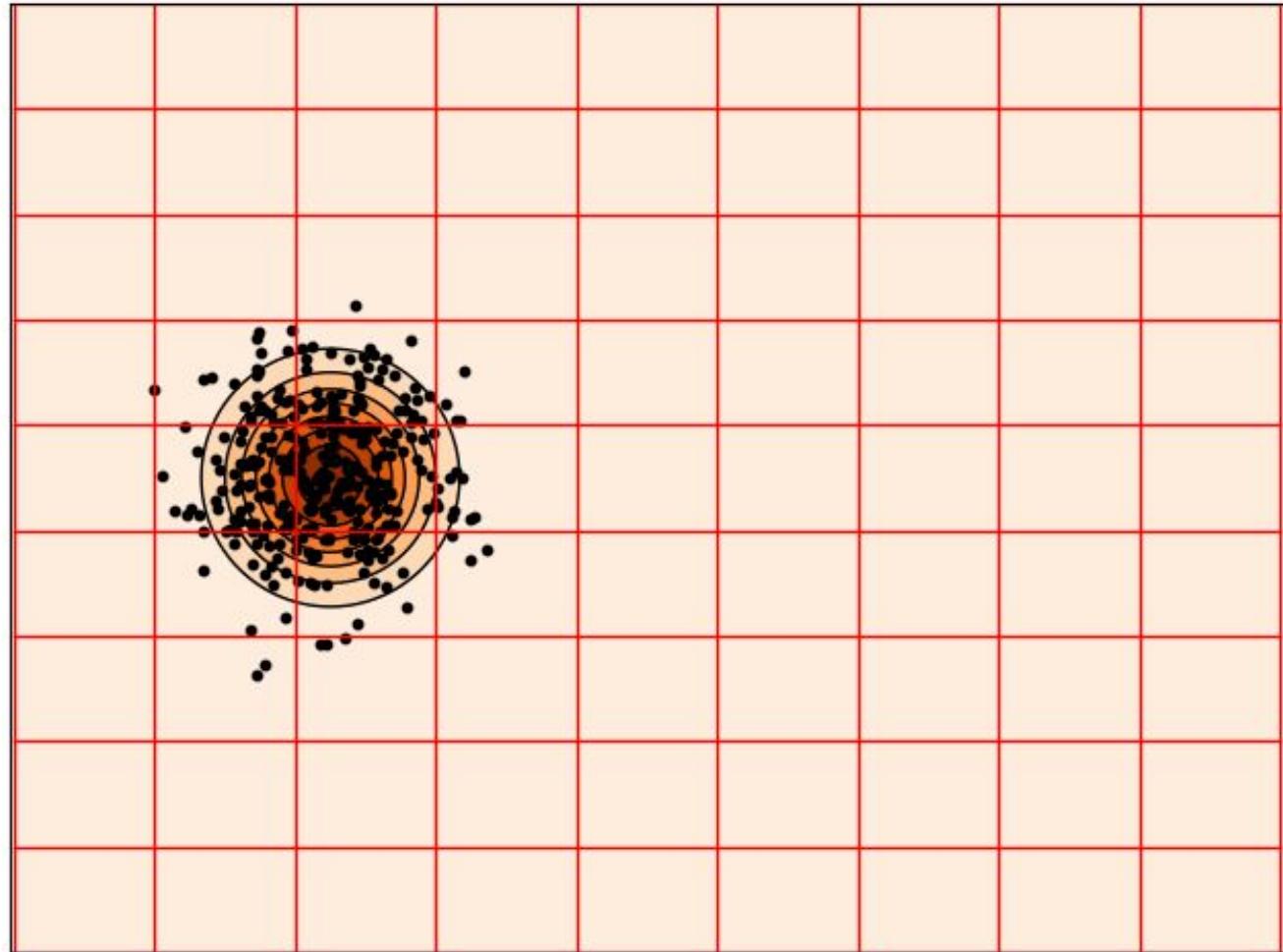
Toy example



*Figure credit:
Yaron Lipman*

Toy Flow Model

*Figure credit:
Yaron Lipman*



How to generate objects with a Flow Model

Algorithm 1 Sampling from a Flow Model with Euler method

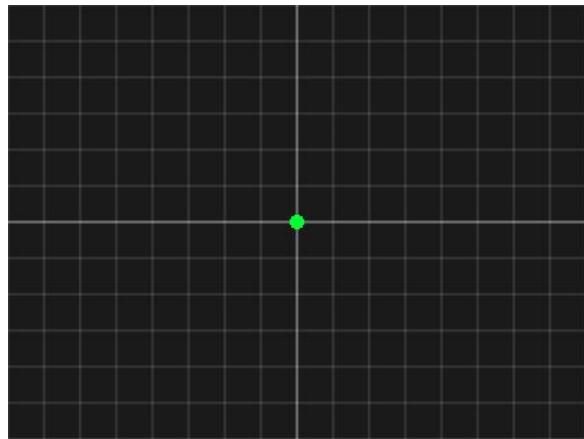
Require: Neural network vector field u_t^θ , number of steps n

- 1: Set $t = 0$
- 2: Set step size $h = \frac{1}{n}$
- 3: Draw a sample $X_0 \sim p_{\text{init}}$ *Random initialization!*
- 4: **for** $i = 1, \dots, n - 1$ **do**
- 5: $X_{t+h} = X_t + h u_t^\theta(X_t)$
- 6: Update $t \leftarrow t + h$
- 7: **end for**
- 8: **return** X_1 *Return final point*

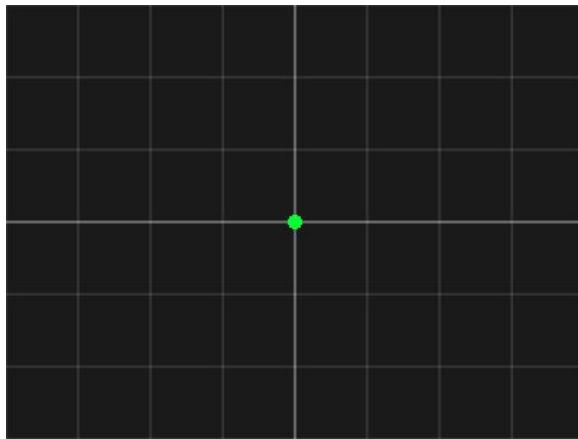
Example - Videos Generated via Flow Model Sampling

Stochastic Process: Random Trajectories

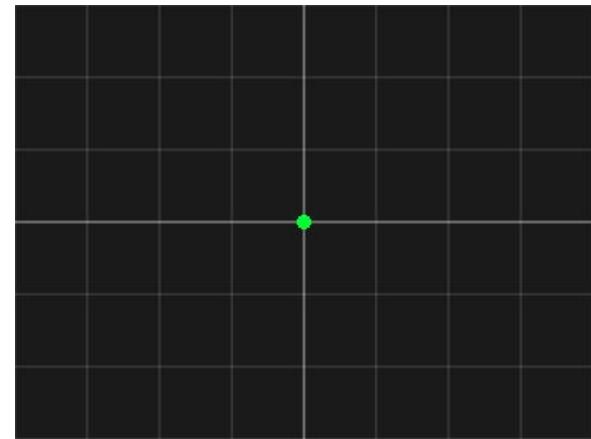
Sample 1



Sample 2



Sample 3

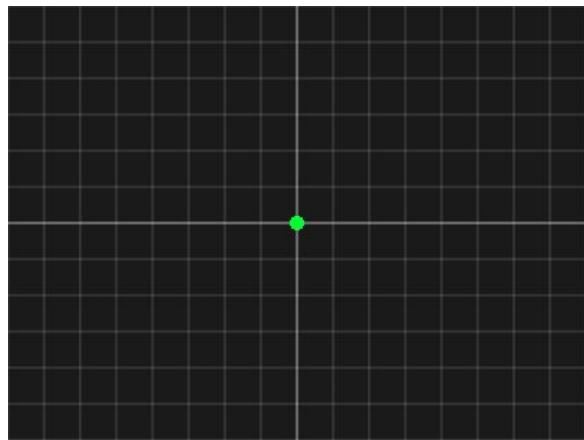


Note: A single stochastic process can give rise to many trajectories as the evolution becomes random.

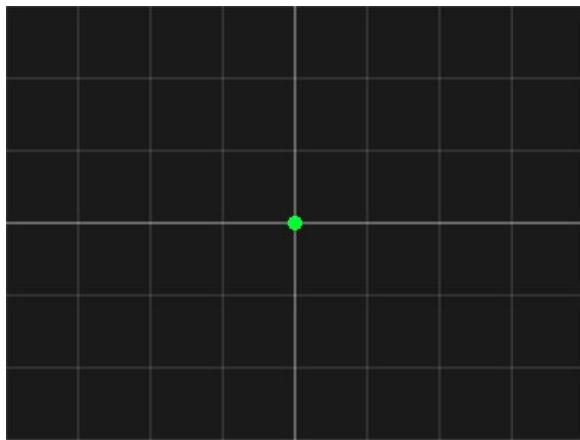
Source: <https://mariogemoll.com/flow-matching>

Brownian Motion: Random Trajectories

Sample 1



Sample 2

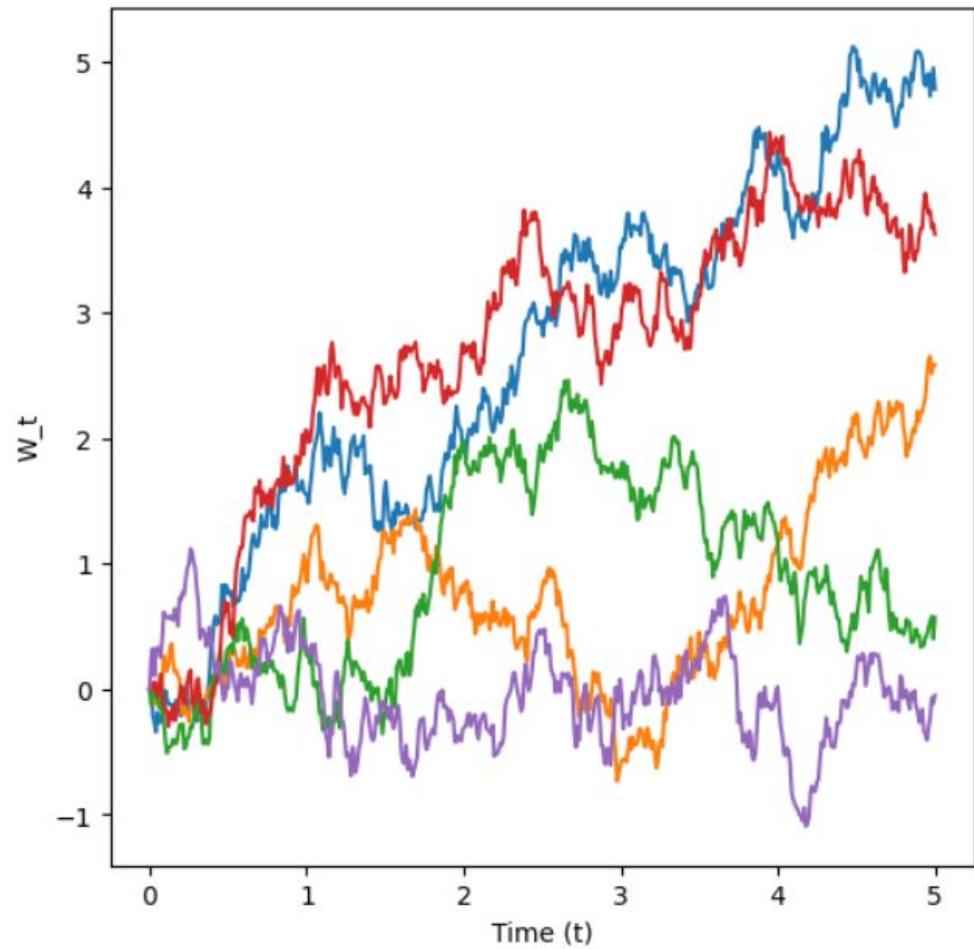


Sample 3



*A Brownian motion behaves like a continuous random walk.
Here: 2-dimensional.*

Brownian Motion



Existence and Uniqueness Theorem SDEs

Theorem: If the vector field $u_t(x)$ is continuously differentiable with bounded derivatives and the diffusion coeff. is continuous, then a *unique* solution (in distribution) to the SDE

$$X_0 = x_0, \quad dX_t = u_t(X_t)dt + \sigma_t dW_t$$

exists. More generally, this is true if the vector field is **Lipschitz**.

Key takeaway: In the cases of practical interest for machine learning, **unique solutions to SDEs exist.**

Stochastic calculus class: Construct solutions via stochastic integrals and Ito-Riemann sums

Numerical SDE simulation (Euler-Maruyama method)

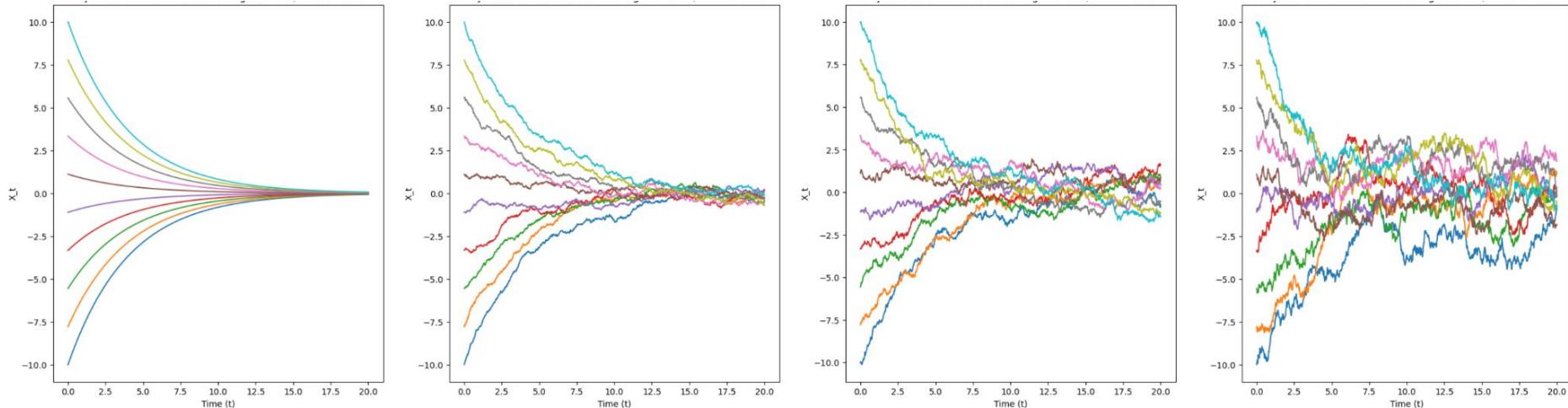
Algorithm 2 Sampling from a SDE (Euler-Maruyama method)

Require: Vector field u_t , number of steps n , diffusion coefficient σ_t

- 1: Set $t = 0$
- 2: Set step size $h = \frac{1}{n}$
- 3: Set $X_0 = x_0$
- 4: **for** $i = 1, \dots, n - 1$ **do**
- 5: Draw a sample $\epsilon \sim \mathcal{N}(0, I_d)$
- 6: $X_{t+h} = X_t + h u_t(X_t) + \sigma_t \sqrt{h} \epsilon$ *Add additional noise with var=h scaled by diffusion coefficient σ_t*
- 7: Update $t \leftarrow t + h$
- 8: **end for**
- 9: **return** $X_0, X_h, X_{2h}, X_{3h}, \dots, X_1$

Ornstein-Uhlenbeck Process

$$dX_t = -\theta X_t dt + \sigma dW_t$$



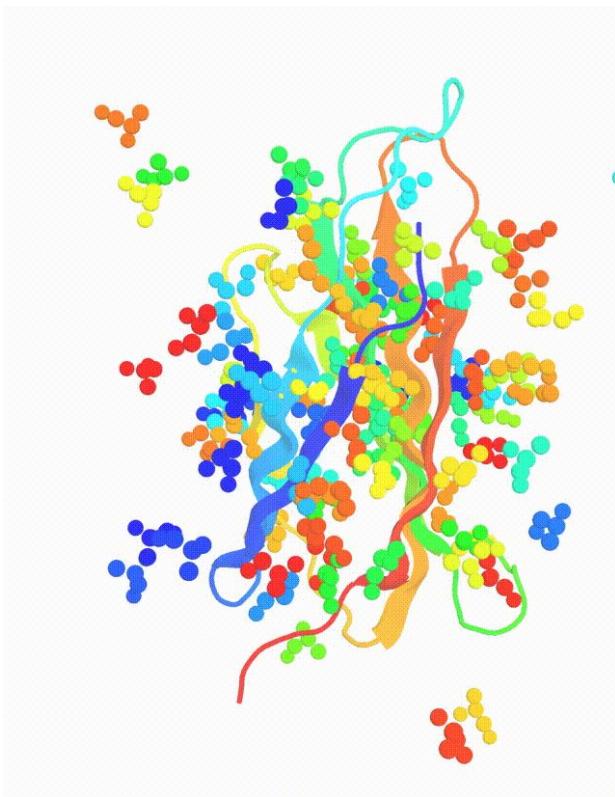
Increasing diffusion coefficient σ

Algorithm 2 Sampling from a Diffusion Model (Euler-Maruyama method)

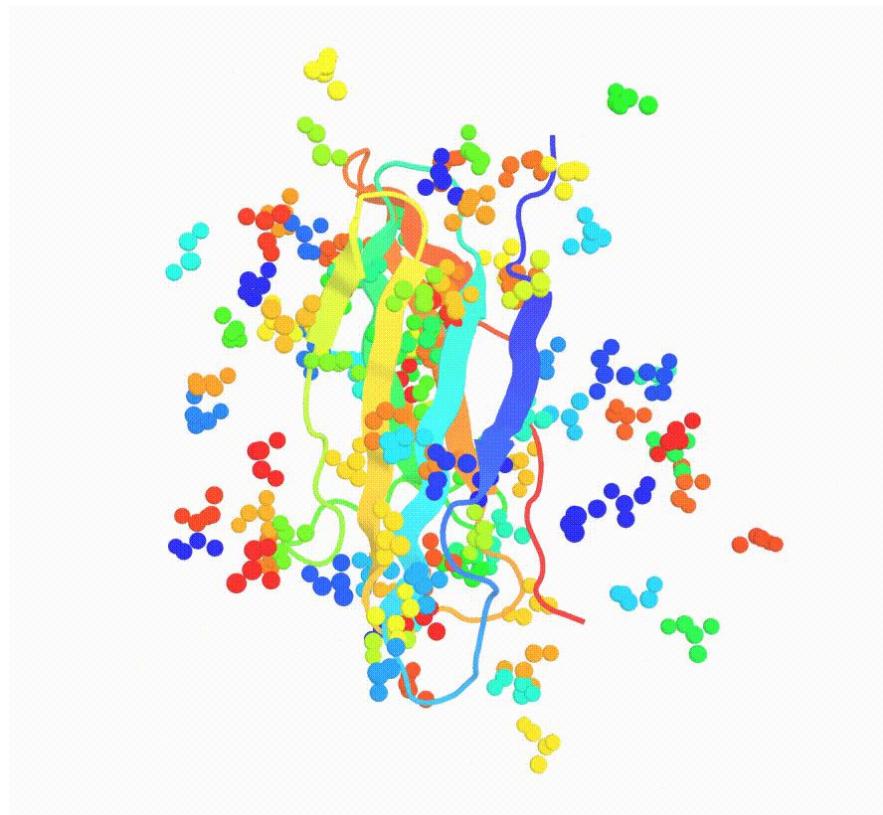
Require: Neural network u_t^θ , number of steps n , diffusion coefficient σ_t

- 1: Set $t = 0$
- 2: Set step size $h = \frac{1}{n}$
- 3: Draw a sample $X_0 \sim p_{\text{init}}$
- 4: **for** $i = 1, \dots, n - 1$ **do**
- 5: Draw a sample $\epsilon \sim \mathcal{N}(0, I_d)$
- 6: $X_{t+h} = X_t + h u_t^\theta(X_t) + \sigma_t \sqrt{h} \epsilon$
- 7: Update $t \leftarrow t + h$
- 8: **end for**
- 9: **return** X_1

ODE Sampling



SDE Sampling



Logistics

Website: <https://diffusion.csail.mit.edu/>

How to pass this class:

1. Come to lecture
2. **Do the labs (necessary to pass)!**

Support:

1. Use the lecture notes (self-contained)
2. Come to office hours

Lab 1 is out today (see website)! We recommend doing it as soon possible for you!

Next class:
**Thursday (Day after tomorrow),
11am-12:30pm**

E25-111 (same room)

Office hours: Wednesday (tomorrow), 11am-12:30pm in 36-144