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Welcome to class 6.5184!
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Peter Ron



Generative Al - A new generation of Al systems

©

Artistic Images Realistic Videos Draft Texts

These systems are “creative”: they generate new objects.

This class teaches you algorithms to generate objects.




Flow and Diffusion Models: state-of-the-art models for
generating images, videos, proteins!

Stable Diffusion AlphaFold3

DALEE Meta MovieGen Boltz

Most SOTA generative Al models for
images/videos/proteins/robotics: Diffusion and Flow Models




This Class: Theory and Practice of Flow/Diffusion Models

Ordinary/stochastic differential
equations

Flow and Diffusion

Models Hr:la{(<- 3 How to implement and apply these

machine learning models

The goal of this class to teach you:

1. Flow and diffusion models from first principles.
2. The minimal but necessary amount of mathematics for 1.
3. How to implement and apply these algorithms.




Class Overview

e Lecture 1 (today):
o From Generation to Sampling: Formalize “generating an image/etc.”
o Construct Flow and Diffusion Models
e Lecture 2 - Flow Matching: Training algorithm.
e Lecture 3 - Score Matching, Guidance: How to condition on a prompt.
e Lecture 4 - Build Image Generators: Network architectures + Latent spaces

e Lecture 5 - Advanced Topics: Discrete diffusion models, distilled models



Section 1:

From Generation to Sampling

Goal: Formalize what it means to “generate” something.



We represent images/videos/protein as vectors

Images: Videos: Molecular structures:
- Height Hand WidthW - T time frames - N atoms
- 3 color channels (RBG) - Eachframeisimage - Each atom has 3 coordinate

» € REXWx3 = RTxHxWx:% = RNxIS

YouTuhe

We represent the objects we want to generate as vectors:

2 € R




What does it mean to successfully generate something?

Prompt: “A picture of a dog”

Useless < Bad < Wrong animal < Great!

These are subjective statements - Can we formalize this?



Data Distribution: How “likely” are we to find this picture in
the internet?

Prompt: “A picture of a dog”

Impossible < Rare < Unlikely < Very likely

How good an image is ~= How likely it is under the
data distribution



Generation as sampling from the data distribution

Data distribution: Distribution of objects that we want to generate: pdata‘
Probability density: Rd R Note: We
: R* — -
DPdata >0 don’t know the
probability
pA l—)pdata(z ) density!

Generation means sampling the data distribution:

< ™~ Pdata > L —




A Dataset consists of samples from the data distribution

Training requires datasets: To train our algorithms, we need a dataset.
Examples:

e Images: Publicly available images from the internet
e \ideos: YouTube
e Protein structures: Scientific data (e.g. Protein Data Bank)

A dataset consists of a finite number of samples from the data

distribution:
Zlye++9”fN ™ Ddata




Conditional Generation allows us to condition on prompts

Data distribution Conditional data distribution | Pdata(*|Y) |

Fixed prompt Condition variable: y
y=HCat”

Conditional generation means sampling the conditional data

distribution: 5~ pdata(' y)

We will first focus on unconditional generation and then learn how to
translate an unconditional model to a conditional one.



Generative Models generate samples from data distribution

Initial distribution:

Pinit

Default:

Pinit

— Oald

A generative model converts samples from a initial distribution (e.g.
Gaussian) into samples from the data distribution:

L ~ Pinit

Generative
Model




Summary

e Objects to Generate: We focus on vectors z representing data objects (e.g., images, videos)

e Data distribution: Distribution that places higher probability to objects that we consider
“good”.

e Generation as sampling: generate an object = sampling from the data distribution

e Dataset: Finite number of samples from the data distribution used for training

e Conditional Generation: Condition on label y and sample from the conditional data
distribution

e Generative Model: Train a model to transform samples from a simple (e.g., Gaussian)

distribution into the data distribution.



Section 2:

Flow and Diffusion Models

Goal: Understand differential equations and how we can build
generative models with them.



ODE Trajectory

- Example

Source: https.//mariogemoll.com/flow-matching



Flow - Example
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Existence and Uniqueness Theorem ODEs

Theorem (Picard-Lindelof theorem): If the vector field u:(x) is
continuously differentiable with bounded derivatives, then a unique
solution to the ODE

d
Xo = o, EXt — Ut(Xt)

exists. In other words, a flow map exists. More generally, this is true if
the vector field is Lipschitz.

Key takeaway: In the cases of practical interest for machine learning,
unique solutions to ODE/flows exist.

Math class: Construct solutions via Picard-Iteration




Example: Linear ODE AR

Simple vector field: 50
w(z) = -0z (0>0) -
Claim: Flow is given by 0

Yi(zo) = exp (—0t) o

Proof:;

1. Initial condition:

?“pt (SU()) — eXp(O)LI;O = To o AR R TR L A8 R NE w8
2. ODE:

%%(ﬂvo) — % (exp (—0t) zg) = —Oexp (—0t) g = —0;(19) = us (e (zo))



Numerical ODE simulation - Euler method

Algorithm 1 Simulating an ODE with the Euler method

Require: Vector field u;, initial condition xy, number of steps n
1: Sett =0
2: Set step size h = %

3: Set Xg = xg

4: for:=1,...,n—1do

5. Xeyn = Xt + hue(Xy) Small step into direction of vector field

6: Updatet<t+h

i

8

. end for
: return Xy, X, Xop,...,X1 Return trajectory




Euler Method - Example

Large step size Small step size

.—/\/

More efficient but higher error Lower error but less efficient

ST

Source: https.//mariogemoll.com/flow-matching



Toy example

Figure credit:
Yaron Lipman

Pinit

Pdata




Toy Flow
Model

Figure credit:
Yaron Lipman




How to generate objects with a Flow Model

Algorithm 1 Sampling from a Flow Model with Euler method

Require: Neural network vector field u¢, number of steps n
. oett =0

Set step size h = %
Draw a sample Xo ~ pinit Random initialization!

for:=1,...,n—1do
Xt—l—h — Xt + h’LL?(Xt)
Update t < t+ h
end for

return X, Return final point




Example - Videos Generated via Flow Model Sampling




Stochastic Process: Random Trajectories

Sample 1 Sample 2 Sample 3

Note: A single stochastic process can give rise to many trajectories as
the evolution becomes random.

Source: https://mariogemoll.com/flow-matching



Brownian Motion: Random Trajectories

Sample 1 Sample 2 Sample 3

A Brownian motion behaves like a continuous random walk.
Here: 2-dimensional.

Source: https://mariogemoll.com/flow-matching



Brownian Motion

Wt
N




Existence and Uniqueness Theorem SDEs

Theorem: If the vector field u(x) is continuously differentiable with bounded
derivatives and the diffusion coeff. is continuous, then a unique solution (in
distribution) to the SDE

XO — X, dXt — Ut(Xt)dt - O'tth

exists. More generally, this is true if the vector field is Lipschitz.

Key takeaway: In the cases of practical interest for machine learning,
unique solutions to SDEs exist.

Stochastic calculus class: Construct solutions via stochastic integrals and
Ito-Riemann sums



Numerical SDE simulation (Euler-Maruyama method)

Algorithm 2 Sampling from a SDE (Euler-Maruyama method)

Require: Vector field u;, number of steps n, diffusion coeflicient o;
1: Sett =0
2: Set step size h = %
3: Set Xg = xg
4: for:=1,...,n—1do
5.  Draw a sample € ~ N (0, I)
6 Xiynh = Xt + hut(Xt) -+ O \/ﬁe Add additional noise with var=h
7 Update t < t+ h scaled by diffusion coefficient o
8
9

: end for
: return XO,Xh,Xgh,Xg,h,...,Xl




Ornstein-Uhlenbeck Process

dXt — —HXtdt -+ O'th
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Algorithm 2 Sampling from a Diffusion Model (Euler-Maruyama method)

Require: Neural network u¢, number of steps n, diffusion coefficient o
: Sett =0
Set step size h = %
Draw a sample Xy ~ pinit
for:=1,...,n—1do
Draw a sample € ~ N (0, I)
Xion = Xi + huf (X;) + oV he
Updatet < t+ h
end for

return X;




ODE Sampling SDE Sampling




Logistics Website: https://diffusion.csail.mit.edu/

How to pass this class:

1. Come to lecture
2. Do the labs (necessary to pass)!

Support:

1. Use the lecture notes (self-contained)
2. Come to office hours

Lab 1 is out today (see website)! We recommend doing it as
soon possible for you!



https://diffusion.csail.mit.edu/

Next class:

Thursday (Day after tomorrow),
11am-12:30pm

E25-111 (same room)

Office hours: Wednesday (tomorrow), 11am-12:30pm in 36-144




